Complex analysis
The existence problem of S-plurisubharmonic currents
[Le problème de l'existence de courants S-plurisousharmoniques]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 605-610.

Dans cette Note, nous montrons l'existence de l'extension triviale des courants S-plurisousharmoniques de bi-dimension (p,p), définis en-dehors d'un obstacle A de mesure de Hausdorff H2p(A)=0. De plus, nous montrons que le courant dgdcgT est bien défini, pour tout courant positif fermé T et toute fonction plurisousharmonique g. Ces résultats reposent sur un relâchement de la condition de nullité d'une mesure de Hausdorff, dans un résultat classique de Demailly sur l'opérateur de Monge–Ampère.

In this paper, we prove the existence of the trivial extension of S-plurisubharmonic currents of bidimension (p,p) defined outside an obstacle A of Hausdorff measure H2p(A)=0. Furthermore, a valid definition of the current dgdcgT is achieved for every positive closed current T and plurisubharmonic function g. The above results rely on an improvement of a classical result due to Demailly on the Monge–Ampère operator with a sharp condition on the Hausdorff measure.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.04.011
Al Abdulaali, Ahmad K. 1 ; El Mir, Hassine 1

1 The Department of Mathematics, College of Science, King Faisal University, P.O. Box 380, Post Code 31982, Al-Ahsaa, Saudi Arabia
@article{CRMATH_2015__353_7_605_0,
     author = {Al Abdulaali, Ahmad K. and El Mir, Hassine},
     title = {The existence problem of {\protect\emph{S}-plurisubharmonic} currents},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {605--610},
     publisher = {Elsevier},
     volume = {353},
     number = {7},
     year = {2015},
     doi = {10.1016/j.crma.2015.04.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.04.011/}
}
TY  - JOUR
AU  - Al Abdulaali, Ahmad K.
AU  - El Mir, Hassine
TI  - The existence problem of S-plurisubharmonic currents
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 605
EP  - 610
VL  - 353
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.04.011/
DO  - 10.1016/j.crma.2015.04.011
LA  - en
ID  - CRMATH_2015__353_7_605_0
ER  - 
%0 Journal Article
%A Al Abdulaali, Ahmad K.
%A El Mir, Hassine
%T The existence problem of S-plurisubharmonic currents
%J Comptes Rendus. Mathématique
%D 2015
%P 605-610
%V 353
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.04.011/
%R 10.1016/j.crma.2015.04.011
%G en
%F CRMATH_2015__353_7_605_0
Al Abdulaali, Ahmad K.; El Mir, Hassine. The existence problem of S-plurisubharmonic currents. Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 605-610. doi : 10.1016/j.crma.2015.04.011. http://www.numdam.org/articles/10.1016/j.crma.2015.04.011/

[1] Al Abdulaali, Ahmad K. The extendability of S-plurisubharmonic currents, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 1023-1026

[2] Al Abdulaali, Ahmad K. Extension of positive currents with special properties of Monge–Ampère operators, Math. Scand., Volume 113 (2013) no. 1, pp. 108-127

[3] Bishop, E. Conditions for the analyticity of certain sets, Mich. Math. J., Volume 11 (1964), pp. 289-304

[4] Dabbek, K.; Elkhadra, F.; El Mir, H. Extension of plurisubharmonic currents, Math. Z., Volume 245 (2003), pp. 455-481

[5] Demailly, J.-P. Monge–Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry, Univ. Ser. Math., Plenum Press, New York, 1993, pp. 115-193

[6] Dinh, T.; Sibony, N. Pull-back currents by holomorphic maps, Manuscr. Math., Volume 123 (2007) no. 3, pp. 357-371

[7] El Mir, H. Sur le prolongement des courants positifs fermés, Acta Math., Volume 153 (1984) no. 1–2, pp. 1-45

[8] Fornæss, J.; Sibony, N. Oka's inequality for currents and applications, Math. Ann., Volume 301 (1995) no. 3, pp. 399-419

[9] Ghiloufi, N.; Dabbek, K. Prolongement d'un courant positif quasiplurisurharmonique, Ann. Math. Blaise Pascal, Volume 16 (2009) no. 2, pp. 287-304

[10] Shiffman, B. On the removal of singularities of analytic sets, Mich. Math. J., Volume 15 (1968), pp. 111-120

Cité par Sources :