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In this paper, we prove the existence of the trivial extension of S-plurisubharmonic 
currents of bidimension (p, p) defined outside an obstacle A of Hausdorff measure 
H2p(A) = 0. Furthermore, a valid definition of the current dg ∧ dc g ∧ T is achieved for 
every positive closed current T and plurisubharmonic function g. The above results rely on 
an improvement of a classical result due to Demailly on the Monge–Ampère operator with 
a sharp condition on the Hausdorff measure.
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r é s u m é

Dans cette Note, nous montrons l’existence de l’extension triviale des courants S-plurisous-
harmoniques de bi-dimension (p, p), définis en-dehors d’un obstacle A de mesure de 
Hausdorff H2p(A) = 0. De plus, nous montrons que le courant dg ∧ dc g ∧ T est bien défini, 
pour tout courant positif fermé T et toute fonction plurisousharmonique g. Ces résultats 
reposent sur un relâchement de la condition de nullité d’une mesure de Hausdorff, dans 
un résultat classique de Demailly sur l’opérateur de Monge–Ampère.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let � be an open subset of Cn and T be a positive current of bidimension (p, p) on �. Recall that T is said to be closed 
if dT = 0, and is said to be S-plurisubharmonic if there exists a positive current S on � such that ddc T ≥ −S . In the first 
part of this paper, which treats the existence problem, we give the sufficient conditions that guarantee the existence of the 
trivial extension of negative S-plurisubharmonic currents.

Theorem 1.1. Let A be a closed complete pluripolar subset of � and T be a negative S-plurisubharmonic current on � \ A. If the Haus-

dorff measure H2p(A ∩ Supp T ) vanishes, then ̃T exists. Moreover, the residual current R = d̃dc T − ddc T̃ is negative and supported 
in A.
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This result generalizes a situation considered by Dabbek–Elkhadhra–El Mir result [4] where the authors studied the 
case S = 0. Both cases when the current S is closed and when S is plurisubharmonic were considered in [9] and [2], 
respectively. In [1], Al Abdulaali succeeded to obtain the extension T̃ , under the same hypotheses above, but when 
H2p−1(A ∩ Supp T ) = 0.

The second part deals with the wedge product of currents. Namely, our interest is to define the current dg ∧ dc g ∧ T .

Theorem 1.2. Let A be a closed subset of � and T be a positive closed current on �, and let g ∈ Psh(�) ∩ L∞
loc(� \ A). If H2p−2(A ∩

Supp T ) = 0, then the current dg ∧ dc g ∧ T is well defined.

As an application of Theorem 1.2, one can show that ∂ g
∂z j

is of class L2
loc when H2n−2(A) = 0. Notice that, this result is 

not true for subharmonic function, and the Newton kernel −1
||z||2n−2 is a counterexample. In this part, we also give a new 

proof which improves a classical result due to Demailly [5], dealing with Monge–Ampère operators of certain unbounded 
plurisubharmonic functions.

Theorem 1.3. Let A be a closed subset of � and T be a positive closed current on �. Assume that g ∈ Psh(�) ∩ L∞
loc(� \ A) such that 

H2p(A ∩ Supp T ) = 0. Then the currents gT and ddc g ∧ T are well defined.

2. Existence problem

In order to prove the existence of an extension ̃T of T , we follow here the strategy previously employed by Ben Messaoud 
and El Mir, which consists in establishing a capacity inequality.

Theorem 2.1. Let A be a closed complete pluripolar subset of � and T be a positive ddc S-negative current on � \ A. Let v be a 
plurisubharmonic function of class C2, v ≥ −1 on � such that �′ = {z ∈ � : v(z) < 0} is relatively compact in �. Let K be a compact 
subset of �′ and set cK = − supz∈K v(z). Then for every plurisubharmonic function u on �′ of class C2 satisfying −1 ≤ u < 0, we 
have: ∫

K\A

T ∧ ddcu ∧ (ddc v)p−1 ≤ c−1
K

∫
�′\A

T ∧ (ddc v)p + ‖S ∧ ddc v‖�′ (2.1)

Proof. We apply the same technique as in [4]. By ([7], Proposition II.2) there exists a negative plurisubharmonic function f
on �′ which is smooth on �′ \ A, such that

A ∩ �′ = {
z ∈ �′ : f (z) = −∞}

(2.2)

Choose λ, μ such that 0 < μ < λ < cK . For m ∈N and ε small enough, we set

ϕm(z) = μu(z) + f (z) + m

m + 1
and ϕm,ε(z) = max

ε
(v(z) + 1,ϕm(z)) (2.3)

Thus, ϕm,ε ∈ Psh(�′) ∩ C∞(�′). Furthermore, ϕm,ε(z) = v(z) + 1 on a neighborhood of ∂�′ ∪ (
�′ ∩ { f ≤ −m}). Consider the 

open subset

�′
m = �′ ∩ { f > −m} (2.4)

By Stokes’ formula,∫
�′

m

T ∧ ddc(ϕm,ε − v − 1) ∧ (ddc v)p−1 ≤
∫

�′
m

(ϕm,ε − v − 1)S ∧ (ddc v)p−1

Hence, there exists a constant ηv > 0 depending on ∂∂v so that∫
�′

m

T ∧ ddcϕm,ε ∧ (ddc v)p−1 ≤
∫

�′
m

T ∧ (ddc v)p + ηv‖S‖�′ (2.5)

Let R > 0 and K R = {z ∈ K : f (z) ≥ −R}. For m sufficiently large, we have K R ⊂ �′
m and ϕm(z) ≥ −μ + m−R

m+1 > 1 − λ for any 
z ∈ K R . Since v ≤ −cK on K R , then v + 1 ≤ 1 − cK ≤ 1 − λ, and because of this we find that ϕm,ε = ϕm on a neighborhood 
of K R . Therefore, by (2.5) we get∫

K

T ∧ ddcϕm ∧ (ddc v)p−1 ≤
∫
′

T ∧ (ddc v)p + ηv‖S‖�′ . (2.6)
R �m
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As ddc f ≥ 0, we see that we have an inequality of (1, 1)-forms ddcϕm ≥ μddcu, thus

μ

∫
K R

T ∧ ddcu ∧ (ddc v)p−1 ≤
∫

�′\A

T ∧ (ddc v)p + ηv‖S‖�′ . (2.7)

The relation in the theorem follows by letting R → ∞ and μ → cK .
Similarly, one can also show that∫

K\A

T ∧ (ddcu)p ≤ 1

cK

∫
�′\A

T ∧ (ddcu)p−1 ∧ ddc v + ‖S ∧ (ddcu)p−1‖�′ � (2.8)

Now, under the preceding hypotheses, our goal is to prove that the boundedness of 
∫

K\A T ∧ (ddcu)p can be achieved by 
estimating from above the mass of T ∧ (ddc v)p near A. This fact will imply our claims. We proceed as follows.

For n ∈ N, set vn = v + 1
n and �′

n = {vn < 0}. Take n1 < n2 < . . . < np−1 so that K ⊂ �′
n1

� . . . � �′
np−1

� �′ and put 
cn j = − sup�′

j
v j . Now by applying (2.8) to vn1 , we find:∫

K\A

T ∧ (ddcu)p ≤ 1

cK

∫
�′

n1
\A

T ∧ (ddcu)p−1 ∧ ddc vn1 + ‖S ∧ (ddcu)p−1‖�′ (2.9)

But ddc v = ddc vn1 = . . . = ddc vnp−1 , and as �′
n1

� �′
n2

, then (1) implies that∫
�′

n1
\A

T ∧ (ddcu)p−1 ∧ ddc vn1 ≤ 1

cn1

∫
�′

n2
\A

T ∧ (ddcu)p−2 ∧ (ddc vn2)
2

+ ηv‖S ∧ (ddcu)p−2‖�′ (2.10)

Hence,∫
K\A

T ∧ (ddcu)p ≤ 1

cK cn1

∫
�′

n2
\A

T ∧ (ddcu)p−2 ∧ (ddc vn2)
2 + η

(p−2)
v,u

cK
‖S‖�′ (2.11)

By iterating the above process p − 1 times, we obtain that∫
K\A

T ∧ (ddcu)p ≤ 1

cK cn1

∫
�′

n2
\A

T ∧ (ddcu)p−2 ∧ (ddc vn2)
2

+ η
(p−2)
v,u

cK
‖S‖�′

≤
...

≤ 1

cK cn1 . . . cnp−1

∫
�′

np−1
\A

T ∧ (ddcu) ∧ (ddc vnp−1)
p−1

+ η′
v,u

cK cn1 . . . cnp−2

‖S‖�′

≤ D v

∫
�′\A

T ∧ (ddc v)p + ηv,u‖S‖�′ ,

for some positive constant D v . Clearly, the argument above leads to the following result.

Theorem 2.2. Let A be a closed complete pluripolar subset of � and T be a positive ddc S-negative current on � \ A of dimension p. 
Let v be a plurisubharmonic function of class C2 , v ≥ −1 on � such that �′ = {z ∈ � : v(z) < 0} is relatively compact in � and ∫
�′\A T ∧ (ddc v)p 
= 0. Let K be a compact subset of �′ . Then there exists a positive constant D v depending only on v such that for 

every plurisubharmonic function u on �′ of class C2 satisfying we have
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∫
K\A

T ∧ (ddcu)p ≤ D v N p
2 (u)

∫
�′\A

T ∧ (ddc v)p, (2.12)

where N2(u) = sup{|∂αu(z)|, |α| ≤ 2, z ∈ �}.

Proof of Theorem 1.1. Let us first assume that T̃ exists. Then by ([6], Theorem 1.3), the extension d̃dc T exists and R is 
negative current.

Now, we show the existence of T̃ . Since the problem is local, it is enough to show that T is of locally finite mass near 
every point z0 in A. Without loss of generality, one can assume that z0 is the origin. Since H2p(A ∩ Supp T ) = 0, then 
by ([3] and [10]) there exist a system of coordinates (z′, z′′) of Cp × Cn−p and a polydisk �p × �n−p ⊂ Cp × Cn−p such 
that (A ∩ Supp T ) ∩ (�p × ∂�n−p) = ∅. Moreover, the projection map π : (A ∩ Supp T ) ∩ (�p × �n−p) → �p is proper, and 
as π(A ∩ Supp T ) is closed with a zero Lebesgue measure in �p , one can find an open subset O  ⊂ �p \ π(A ∩ Supp T ). 
Therefore the current has locally finite mass on O  × �n−p . Let 0 < δ < 1 such that (A ∩ Supp T ) ∩ (�p × {z′′, δ < |z′′| <
1}) = ∅, and fix a and t two real numbers such that δ < a < t < 1. Set

ρε = max
ε

(
π∗ρ,

1

t2 − a2
(|z′′|2 − t2)

)
(2.13)

where ρ is a smooth plurisubharmonic function on �p such that (ddcρ)p supported in O . We have −1 ≤ ρε < 0 in t�n

and ρε = π∗ρ on {|z′′| ≤ a}, and we obtain∫
(t�n)\A

T ∧ (ddcρε)
p =

∫
(t�p)×{|z′′|<a}\A

T ∧ (ddc(π∗ρ))p

+
∫

(t�p)×{a≤|z′′|<t}
T ∧ (ddcρε)

p

since (ddcπ∗ρ)p supported in O  × �n−p then both integrals of the right hand side are finite. By applying the previous 
result on −T for v = ρε and u = |z|2−nt2

nt2 , we infer that T̃ exists. �
3. Wedge product of currents

In this section we study the wedge product of positive currents. From now on, in this section, we assume that A is a 
closed subset of � and g ∈ Psh(�) ∩ L∞

loc(� \ A). Here we start by giving a new proof of a classical result due to Fornæss 
and Sibony [8] which asserts Theorem 1.3.

Theorem 1.3. Let T be a positive closed current on � and let H2p(A ∩ Supp T ) = 0. Then the currents gT together with ddc g ∧ T are 
well defined.

The result was first considered by Demailly in [5] where he studied the case when H2p−1(A ∩ Supp T ) = 0.

Proof. Let us first assume that g smooth and negative. Now, the current −gT is positive ddc-negative current of bidimen-
sion (p, p) on �. Using the same notation as in the proof of Theorem 1.1, we find∫

(t�n)

−gT ∧ (ddcρε)
p =

∫
(t�p×{|z′′|<a}

−gT ∧ (ddc(π∗ρ))p

+
∫

(t�p)×{a≤|z′′|<t}
−gT ∧ (ddcρε)

p

Therefore, there exists a neighborhood V of t �n ∩A such that∫
(t�n)

−gT ∧ (ddcρε)
p ≤ η||gT ||t�n\V (3.1)

for some positive constant η. To conclude the proof, we let K be a compact subset of t�n and set �m = {z ∈ K , d(z, A) < 1
m }. 

Now, suppose that g ∈ L∞
loc(� \ A), we put

am = inf g(z) (3.2)

z∈K\�m
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Since g is smooth on � \ A, then am > −∞ for all m. For εm > 0 small enough, set

gm = max
εm

(g,am − 1

2m
) (3.3)

Observe that, gm is smooth plurisubharmonic function and gm = g on K \�m . Then by the previous part, for m sufficiently 
large, we have:∫

K\�m

−gT ∧ β p ≤
∫
K

−gm T ∧ β p

≤ C‖gm‖L∞(t�n\V )‖T ‖t�n\V

= C‖g‖L∞(t�n\V )‖T ‖t�n\V

By letting m tends to ∞ we find that g̃T exists. Hence, by monotone convergence, we deduce that the current gT is 
well defined, and the existence of ddc g ∧ T is obtained from the continuity of the operators d and dc . �

Now, we show our second main theorem.

Theorem 1.2. Let T be a positive closed current on � and let H2p−2(A ∩ Supp T ) = 0. Then the current dg ∧ dc g ∧ T is well defined.

Proof. By regularizing g and subtracting a constant, we may assume that g is a smooth negative function. Since H2p−2(A ∩
Supp T ) = 0, then H2p−1(A ∩ Supp T ) = 0. Let us assume that 0 ∈ Supp T ∩ A. Then by [3] and [10], there exist a system 
of coordinates (z′, z′′) ∈ Cs × Cn−s , s = p − 1 and a polydisk �n = �′ × �′′ such that �′ × ∂ �′′ ∩(Supp T ∩ A) = ∅. Now, 
take 0 < t < 1 so that �′ × {z′′, t < |z′′| < 1} ∩ (Supp T ∩ A) = ∅. As �n ∩ A is compact set, one can find a neighborhood 
ω of �n ∩ A such that ω ∩ (�′ × {z′′, t < |z′′| < 1}) = ∅. Let a ∈ (t, 1) and choose ρ(z′) ∈ C∞

0 (a�′) such that 0 ≤ ρ ≤ 1 and 
ρ = 1 on 1

2 a�′ . Take χ ∈ C∞
0 (ω) such that 0 ≤ χ ≤ 1 and χ = 1 on a neighborhood ω0 of �n ∩ A. Obviously, the function 

χ(z)ρ(z′) is positive smooth and compactly supported in a�n . For convenience, we set β ′ = ddc(|z′|2), β ′′ = ddc(|z′′|2) and 
α(z′) = ρ(z′)β ′s .∫

�′×�′′
χ gddc g ∧ T ∧ α(z′) = −

∫
�′×�′′

d(χ g) ∧ dc g ∧ T ∧ α(z′)

= |
∫

�′×�′′
(χdg ∧ dc g ∧ T + gdχ ∧ dc g ∧ T )α(z′)|

Using the Cauchy–Schwarz inequality one can show that:∫
�′×�′′

χdg ∧ dc g ∧ T ∧ α(z′) ≤ |
∫

�′×�′′
χ gddc g ∧ T ∧ α(z′)|

+
⎛
⎜⎝ ∫

�′×�′′
g2dχ ∧ dcχ ∧ T ∧ α(z′)

⎞
⎟⎠

1
2
⎛
⎜⎝ ∫

�′×�′′
dg ∧ dc g ∧ T ∧ α(z′)

⎞
⎟⎠

1
2

(3.4)

The forms dχ , dcχ vanish on some neighborhood V ′ of �n ∩ A, therefore we can change �′ × �′′ by �′ × �′′ \ V ′ in the 
last line integral of (3.4), and hence the extension ˜dg ∧ dc g ∧ T exists. Now, a simple computation shows that

ddc(g2T ) = 2gddc g ∧ T + 2dg ∧ dc g ∧ T ≤ 2dg ∧ dc g ∧ T

Therefore, g̃2T exists thanks to [2], and monotone convergence implies that g2 T is well-defined. As the current gddc g ∧ T
is a well-defined current by Theorem 1.3, our desired goal can be obtained by defining:

dg ∧ dc g ∧ T = 1

2
ddc(g2T ) − gddc g ∧ T � (3.5)

Remark 3.1.

(1) The statement of Theorem 1.2 is true when T is defined outside of A. Indeed, in this case the extension T̃ exists by [4], 
and is closed.

(2) The diagonal coefficients of dg ∧ dc g are 2| ∂ g |2. Therefore, dg ∧ dc g is of locally finite mass if and only if ∂ g is L2 .

∂z j ∂z j loc
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Application of Theorem 1.2. Let A be a closed subset of �. Assume that g ∈ Psh(�) ∩ L∞
loc(� \ A) such that H2n−2(A) = 0, 

then by Theorem 1.2, one can prove that ∂ g
∂z j

is L2
loc.

Finally, we wish to point out that the condition on the Hausdorff measure in Theorem 1.2 is sharp as the following 
example shows.

Example 3.2. In C, let T = 1 and g = log|z|2. We find that dg ∧ dc g ∧ T is not of finite mass near the origin. This shows 
that our result since H2(1)−2({0}) = 1 is sharp, and likewise that point (2) in the last remark is also sharp.
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