Soit et un caractère additif non trivial. Soit U le sous-groupe des matrices triangulaires supérieures unipotentes de G. Notons le caractère donné par
Let and be an additive character. Let U be the subgroup of upper triangular unipotent matrices in G. Denote by θ the character given by
Accepté le :
Publié le :
@article{CRMATH_2015__353_7_579_0, author = {Kemarsky, Alexander}, title = {A note on the {Kirillov} model for representations of $ {\mathrm{GL}}_{n}(\mathbb{C})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {579--582}, publisher = {Elsevier}, volume = {353}, number = {7}, year = {2015}, doi = {10.1016/j.crma.2015.04.002}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.04.002/} }
TY - JOUR AU - Kemarsky, Alexander TI - A note on the Kirillov model for representations of $ {\mathrm{GL}}_{n}(\mathbb{C})$ JO - Comptes Rendus. Mathématique PY - 2015 SP - 579 EP - 582 VL - 353 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2015.04.002/ DO - 10.1016/j.crma.2015.04.002 LA - en ID - CRMATH_2015__353_7_579_0 ER -
%0 Journal Article %A Kemarsky, Alexander %T A note on the Kirillov model for representations of $ {\mathrm{GL}}_{n}(\mathbb{C})$ %J Comptes Rendus. Mathématique %D 2015 %P 579-582 %V 353 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2015.04.002/ %R 10.1016/j.crma.2015.04.002 %G en %F CRMATH_2015__353_7_579_0
Kemarsky, Alexander. A note on the Kirillov model for representations of $ {\mathrm{GL}}_{n}(\mathbb{C})$. Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 579-582. doi : 10.1016/j.crma.2015.04.002. http://www.numdam.org/articles/10.1016/j.crma.2015.04.002/
[1] Representations of the group where K is a local field, Budapest, 1971, Halsted, New York (1975), pp. 95-118
[2] Distinction by the quasi-split unitary group, Isr. J. Math., Volume 178 (2010) no. 1, pp. 269-324
[3] On Euler products and the classification of automorphic representations I, Amer. J. Math., Volume 103 (1981) no. 3, pp. 499-558
[4] The multiplicity one theorem for GL(n), Ann. Math., Volume 100 (1974) no. 2, pp. 171-193
Cité par Sources :