Lie algebras/Functional analysis
A note on the Kirillov model for representations of GLn(C)
[Une note sur le modèle de Kirillov des représentations de GLn(C)]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 579-582.

Soit G=GLn(C) et 1ψ:CC× un caractère additif non trivial. Soit U le sous-groupe des matrices triangulaires supérieures unipotentes de G. Notons θ:UC le caractère donné par

θ(u):=ψ(u1,2+u2,3++un1,n).
Soit P le sous-groupe mirabolique constitué des matrices de G dont la dernière ligne est (0,0,,0,1). Nous montrons que, si π est une représentation irréductible générique de G et si W(π,ψ) est son modèle de Whittaker, alors l'espace {f|P:PC:fW(π,ψ)} contient l'espace des fonctions f:PC infiniment différentiables, qui satisfont f(up)=ψ(u)f(p) pour tout uU et pP et qui ont un support compact modulo U. Un résultat similaire a été établi pour GLn(F), où F est un corps p-adique, par Gelfand et Kazhdan (1975) [1] et pour GLn(R) par Jacquet (2010) [2].

Let G=GLn(C) and 1ψ:CC× be an additive character. Let U be the subgroup of upper triangular unipotent matrices in G. Denote by θ the character θ:UC given by

θ(u):=ψ(u1,2+u2,3++un1,n).
Let P be the mirabolic subgroup of G consisting of all matrices in G with the last row equal to (0,0,,0,1). We prove that if π is an irreducible generic representation of GLn(C) and W(π,ψ) is its Whittaker model, then the space {f|P:PC:fW(π,ψ)} contains the space of infinitely differentiable functions f:PC that satisfy f(up)=ψ(u)f(p) for all uU and pP and that have a compact support modulo U. A similar result was proven for GLn(F), where F is a p-adic field by Gelfand and Kazhdan (1975) [1] and for GLn(R) by Jacquet (2010) [2].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.04.002
Kemarsky, Alexander 1

1 Technion, Mathematics, Department of Mathematics, Haifa, Israel
@article{CRMATH_2015__353_7_579_0,
     author = {Kemarsky, Alexander},
     title = {A note on the {Kirillov} model for representations of $ {\mathrm{GL}}_{n}(\mathbb{C})$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {579--582},
     publisher = {Elsevier},
     volume = {353},
     number = {7},
     year = {2015},
     doi = {10.1016/j.crma.2015.04.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.04.002/}
}
TY  - JOUR
AU  - Kemarsky, Alexander
TI  - A note on the Kirillov model for representations of $ {\mathrm{GL}}_{n}(\mathbb{C})$
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 579
EP  - 582
VL  - 353
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.04.002/
DO  - 10.1016/j.crma.2015.04.002
LA  - en
ID  - CRMATH_2015__353_7_579_0
ER  - 
%0 Journal Article
%A Kemarsky, Alexander
%T A note on the Kirillov model for representations of $ {\mathrm{GL}}_{n}(\mathbb{C})$
%J Comptes Rendus. Mathématique
%D 2015
%P 579-582
%V 353
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.04.002/
%R 10.1016/j.crma.2015.04.002
%G en
%F CRMATH_2015__353_7_579_0
Kemarsky, Alexander. A note on the Kirillov model for representations of $ {\mathrm{GL}}_{n}(\mathbb{C})$. Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 579-582. doi : 10.1016/j.crma.2015.04.002. http://www.numdam.org/articles/10.1016/j.crma.2015.04.002/

[1] Gelfand, I.M.; Kazhdan, D. Representations of the group GL(n,K) where K is a local field, Budapest, 1971, Halsted, New York (1975), pp. 95-118

[2] Jacquet, H. Distinction by the quasi-split unitary group, Isr. J. Math., Volume 178 (2010) no. 1, pp. 269-324

[3] Jacquet, H.; Shalika, J.A. On Euler products and the classification of automorphic representations I, Amer. J. Math., Volume 103 (1981) no. 3, pp. 499-558

[4] Shalika, J.A. The multiplicity one theorem for GL(n), Ann. Math., Volume 100 (1974) no. 2, pp. 171-193

Cité par Sources :