Dynamical systems/Probability theory
Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions
[Équivalence de measures de Palm pour les processus déterminantaux associés aux espaces de Hilbert des fonctions holomorphes]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 551-555.

On obtient des formules explicites, sous forme des fonctionnelles multiplicatives régularisées liées à certains produits de Blaschke, des dérivées de Radon–Nikodym entre toutes les mesures de Palm pour les processus déterminantaux associés aux espaces de Bergman pondérés sur le disque. Notre méthode s'applique également aux processus déterminantaux associés aux espaces de Fock pondérés.

We obtain explicit formulae, in the form of regularized multiplicative functionals related to certain Blaschke products, of the Radon–Nikodym derivatives between reduced Palm measures of all orders for determinantal point processes associated with a large class of weighted Bergman spaces on the disk. Our method also applies to determinantal point processes associated with weighted Fock spaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.03.018
Bufetov, Alexander I. 1, 2, 3, 4, 5 ; Qiu, Yanqi 1

1 Aix-Marseille Université, Centrale Marseille, CNRS, I2M, UMR7373, 39, rue Frédéric-Juliot-Curie, 13453 Marseille, France
2 Steklov Institute of Mathematics, Moscow, Russian Federation
3 Institute for Information Transmission Problems, Moscow, Russian Federation
4 National Research University Higher School of Economics, Moscow, Russian Federation
5 Rice University, Houston, TX, United States
@article{CRMATH_2015__353_6_551_0,
     author = {Bufetov, Alexander I. and Qiu, Yanqi},
     title = {Equivalence of {Palm} measures for determinantal point processes associated with {Hilbert} spaces of holomorphic functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {551--555},
     publisher = {Elsevier},
     volume = {353},
     number = {6},
     year = {2015},
     doi = {10.1016/j.crma.2015.03.018},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.03.018/}
}
TY  - JOUR
AU  - Bufetov, Alexander I.
AU  - Qiu, Yanqi
TI  - Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 551
EP  - 555
VL  - 353
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.03.018/
DO  - 10.1016/j.crma.2015.03.018
LA  - en
ID  - CRMATH_2015__353_6_551_0
ER  - 
%0 Journal Article
%A Bufetov, Alexander I.
%A Qiu, Yanqi
%T Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions
%J Comptes Rendus. Mathématique
%D 2015
%P 551-555
%V 353
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.03.018/
%R 10.1016/j.crma.2015.03.018
%G en
%F CRMATH_2015__353_6_551_0
Bufetov, Alexander I.; Qiu, Yanqi. Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions. Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 551-555. doi : 10.1016/j.crma.2015.03.018. http://www.numdam.org/articles/10.1016/j.crma.2015.03.018/

[1] Bufetov, A.I. Quasi-symmetries of determinantal point processes, Sep 2014 | arXiv

[2] Ghosh, S.; Peres, Y. Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues | arXiv

[3] Holroyd, A.E.; Soo, T. Insertion and deletion tolerance of point processes, Electron. J. Probab., Volume 18 (2013) no. 74, pp. 1-24

[4] Hough, J.B.; Krishnapur, M.; Peres, Y.; Virág, B. Determinantal processes and independence, Probab. Surv., Volume 3 (2006), pp. 206-229

[5] Lyons, R. Determinantal probability measures, Publ. Math. Inst. Hautes Études Sci., Volume 98 (2003), pp. 167-212

[6] Macchi, O. The coincidence approach to stochastic point processes, Adv. Appl. Probab., Volume 7 (1975), pp. 83-122

[7] Olshanski, G. The quasi-invariance property for the Gamma kernel determinantal measure, Adv. Math., Volume 226 (2011) no. 3, pp. 2305-2350

[8] Osada, H.; Shirai, T. Absolute continuity and singularity of Palm measures of the Ginibre point process, June 2014 | arXiv

[9] Peres, Y.; Virág, B. Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process, Acta Math., Volume 194 (2005) no. 1, pp. 1-35

[10] Shirai, T.; Takahashi, Y. Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes, J. Funct. Anal., Volume 205 (2003) no. 2, pp. 414-463

[11] Shirai, T.; Takahashi, Y. Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties, Ann. Probab., Volume 31 (2003) no. 3, pp. 1533-1564

[12] Soshnikov, A. Determinantal random point fields, Usp. Mat. Nauk, Volume 55 (2000) no. 5(335), pp. 107-160

Cité par Sources :