Ordinary differential equations/Calculus of variations
Existence of bound and ground states for a system of coupled nonlinear Schrödinger–KdV equations
[Existence de solutions à énergie finie et énergie minimale pour des systèmes couplés d'équations de Schrödinger–KdV non linéaires]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 511-516.

On montre l'existence de solutions à énergie finie et énergie minimale pour des systèmes couplés d'équations de Schrödinger–Korteweg–de Vries non linéaires, en fonction de la taille du coefficient de couplage.

We prove the existence of bound and ground states for a system of coupled nonlinear Schrödinger–Korteweg–de Vries equations, depending on the size of the coupling coeffi-cient.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.03.011
Colorado, Eduardo 1, 2

1 Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
2 Instituto de Ciencias Matemáticas, ICMAT (CSIC–UAM–UC3M–UCM), C/Nicolás Cabrera 15, 28049 Madrid, Spain
@article{CRMATH_2015__353_6_511_0,
     author = {Colorado, Eduardo},
     title = {Existence of bound and ground states for a system of coupled nonlinear {Schr\"odinger{\textendash}KdV} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {511--516},
     publisher = {Elsevier},
     volume = {353},
     number = {6},
     year = {2015},
     doi = {10.1016/j.crma.2015.03.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.03.011/}
}
TY  - JOUR
AU  - Colorado, Eduardo
TI  - Existence of bound and ground states for a system of coupled nonlinear Schrödinger–KdV equations
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 511
EP  - 516
VL  - 353
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.03.011/
DO  - 10.1016/j.crma.2015.03.011
LA  - en
ID  - CRMATH_2015__353_6_511_0
ER  - 
%0 Journal Article
%A Colorado, Eduardo
%T Existence of bound and ground states for a system of coupled nonlinear Schrödinger–KdV equations
%J Comptes Rendus. Mathématique
%D 2015
%P 511-516
%V 353
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.03.011/
%R 10.1016/j.crma.2015.03.011
%G en
%F CRMATH_2015__353_6_511_0
Colorado, Eduardo. Existence of bound and ground states for a system of coupled nonlinear Schrödinger–KdV equations. Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 511-516. doi : 10.1016/j.crma.2015.03.011. http://www.numdam.org/articles/10.1016/j.crma.2015.03.011/

[1] Ambrosetti, A.; Colorado, E. Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006) no. 7, pp. 453-458

[2] Ambrosetti, A.; Colorado, E. Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. (2), Volume 75 (2007) no. 1, pp. 67-82

[3] Ambrosetti, A.; Rabinowitz, P.H. Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349-381

[4] Colorado, E. Existence results for some systems of coupled fractional nonlinear Schrödinger equations, Recent Trends in Nonlinear Partial Differential Equations. II. Stationary Problems, Contemp. Math., vol. 595, Amer. Math. Soc., Providence, RI, USA, 2013, pp. 135-150

[5] Colorado, E. Positive solutions to some systems of coupled nonlinear Schrödinger equations, Nonlinear Anal., Volume 110 (2014), pp. 104-112

[6] Colorado, E. On the existence of bound and ground states for some coupled nonlinear Schrödinger–Korteweg–de Vries equations, 2014 (Preprint) | arXiv

[7] Dias, J.-P.; Figueira, M.; Oliveira, F. Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 19–20, pp. 1079-1082

[8] Ekeland, I. On the variational principle, J. Math. Anal. Appl., Volume 47 (1974), pp. 324-353

[9] Funakoshi, M.; Oikawa, M. The resonant interaction between a long internal gravity wave and a surface gravity wave packet, J. Phys. Soc. Jpn., Volume 52 (1983) no. 1, pp. 1982-1995

[10] Lions, P.L. The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984), pp. 223-283

[11] Liu, C.; Zheng, Y. On soliton solutions to a class of Schrödinger–KdV systems, Proc. Amer. Math. Soc., Volume 141 (2013) no. 10, pp. 3477-3484

[12] Wei, J.; Yao, W. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., Volume 11 (2012) no. 3, pp. 1003-1011

Cité par Sources :