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r é s u m é

On montre l’existence de solutions à énergie finie et énergie minimale pour des systèmes 
couplés d’équations de Schrödinger–Korteweg–de Vries non linéaires, en fonction de la 
taille du coefficient de couplage.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of this note is to show some existence of solutions for a system of coupled nonlinear Schrödinger–KdV equations 
as follows,

{
i ft + fxx + α f g + | f |2 f = 0
gt + gxxx + ggx + 1

2α(| f |2)x = 0,
(1)

where f = f (x, t) ∈ C while g = g(x, t) ∈ R, and α < 0 is the real coupling constant. System (1) appears in phenomena of 
interactions between short and long dispersive waves, arising in fluid mechanics, such as the interactions of capillary–gravity 
water waves. Indeed, f represents the short wave, while g stands for the long wave; see for instance [9] and references 
therein.
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If we define f (x, t) = ei(ωt+kx)u(x − ct), g(x, t) = v(x − ct), with u, v ≥ 0 real functions, choosing λ1 = k2 +ω, λ2 = c = 2k
and β = −α, we get that u, v solve the following system{−u′′ + λ1u = u3 + βuv

−v ′′ + λ2 v = 1
2 v2 + 1

2 βu2.
(2)

We deal with the general case; λ1 not necessarily equals λ2. We demonstrate the existence of positive even:

– bound states when the coupling parameter β > 0 is sufficiently small; or 0 < β < � and λ2 large enough,
– ground states provided the coupling factor β > � > 0, not proved before for none range of λ j > 0, j = 1, 2; or 0 < β < �

and λ2 large enough.

Note that if 0 < β < � and if λ2 is large enough, we show a multiplicity of positive solutions, precisely the existence of 
at least two positive solutions.

In the particular case when λ1 = λ2 and β > 1
2 studied by Dias et al. in [7], the authors proved the existence of non-

negative bound states. As a consequence of our existence results, we show, in that range of parameters, that there exist 
not only non-negative bound states, but also positive ground states. Also, we want to point out that our method is in part 
inspired by [1,2], that it is different from the one in [7], and that it seems to be more appropriate to study system (2); see 
Remarks 4, 5. Another relevant result that we show is the multiplicity result on the existence of bound and ground states 
for β > 0 small. This is a great novelty with respect to the previous known results and it is completely different from the 
more studied coupled systems of NLSE, in which there is uniqueness of positive solutions, see for instance [12]. System (2)
has also been recently studied by Liu and Zheng in [11] in the dimensional case n = 2, 3, see Remark 10(ii) where we give 
a comparison with our results.

We use the following notation: E denotes the Sobolev space W 1,2(R), which can be defined as the completion of C1
0 (R)

endowed with the norm ‖u‖ = √
(u | u), with the scalar product (u | w) = ∫

R
(u′w ′ + uw) dx. We denote the following 

equivalent norms and scalar products in E ,

‖u‖ j =
⎛
⎝∫

R

(|u′|2 + λ ju
2)dx

⎞
⎠

1
2

, (u|v) j =
∫
R

(u′ · v ′ + λ juv)dx; j = 1,2.

We define the product Sobolev space E = E × E . The elements in E are denoted by u = (u, v), and 0 = (0, 0). We take 
‖u‖ =

√
‖u‖2

1 + ‖v‖2
2 as a norm in E. For u ∈ E, u ≥ 0, u > 0, means that u, v ≥ 0, u, v > 0, respectively. We denote H as 

the space of even (radial) functions in E , and H = H × H . We define the functional

�(u) = I1(u) + I2(v) − 1
2 β

∫
R

u2 v dx, u ∈ E,

where

I1(u) = 1
2 ‖u‖2

1 − 1
4

∫
R

u4dx, I2(v) = 1
2 ‖v‖2

2 − 1
6

∫
R

v3dx, u, v ∈ E.

We say that u ∈ E is a non-trivial bound state of (2) if u is a non-trivial critical point of �. A bound state ̃u is called ground 
state if its energy is minimal among all the non-trivial bound states, namely

�(̃u) = min{�(u) : u ∈ E \ {0}, �′(u) = 0}. (3)

An expanded version of this note, with more details and further results, will appear in [6].

2. Existence of ground states

Concerning the ground state solutions of (2), our first result is the following.

Theorem 1. There exists a real constant � > 0 such that for any β > �, System (2) has a positive even ground state ̃u = (̃u, ̃v).

We will work in H. Setting,

�(u) = (∇�(u)|u) = (I ′1(u)|u) + (I ′2(v)|v) − 3

2
β

∫
R

u2 v dx,

we define the corresponding Nehari manifold
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N = {u ∈H \ {0} : �(u) = 0}.
One has that

(∇�(u) | u) = −‖u‖2 −
∫
R

u4 < 0, ∀u ∈ N , (4)

and thus N is a smooth manifold locally near any point u 	= 0 with �(u) = 0. Moreover, �′′(0) = I ′′1(0) + I ′′2(0) is positive 
definite, then we infer that 0 is a strict minimum for �. As a consequence, 0 is an isolated point of the set {�(u) = 0}, 
proving that N is a smooth complete manifold of codimension 1, and there exists a constant ρ > 0 so that

‖u‖2 > ρ, ∀u ∈ N . (5)

Furthermore, (4) and (5) plainly imply that u ∈ H \ {0} is a critical point of � if and only if u ∈ N is a critical point of �
constrained on N .

Note that by the previous arguments, the Nehari manifold N is a natural constraint of �. Also it is remarkable that 
working on the Nehari manifold, the functional � takes the form:

�|N (u) = 1

6
‖u‖2 + 1

12

∫
Rn

u4dx =: F (u), (6)

and by (5) we have

�|N (u) ≥ 1

6
‖u‖2 >

1

6
ρ. (7)

Then (7) shows that the functional � is bounded from below on N , so one can try to minimize it on the Nehari manifold N . 
With respect to he Palais–Smale (PS for short) condition, we remember that in the one-dimensional case, one cannot expect 
a compact embedding of E into Lq(R) for any q verifying 2 < q < ∞. Indeed, working on H (the even case) it is not true 
too. However, we will show that for a PS sequence, we can find a subsequence for which the weak limit is a solution. This 
fact, jointly with some properties of the Schwarz symmetrization, will permit us to prove Theorem 1. By the previous lack 
of compactness, we enunciate a measure result given in [10] that we will use in the proof of Theorem 1.

Lemma 2. If 2 < q < ∞, there exists a constant C > 0 such that

∫
Rn

|u|q dx ≤ C

⎛
⎜⎝sup

z∈R

∫
|x−z|<1

|u(x)|2 dx

⎞
⎟⎠

q−2
2

‖u‖2
E , ∀ u ∈ E. (8)

Let V denote the unique positive even solution of −v ′′ + v = v2, v ∈ H . Setting

V 2(x) = 2λ2 V (
√

λ2 x) = 3λ2 sech2
(√

λ2

2
x

)
, (9)

one has that V 2 is the unique positive solution of −v ′′ + λ2 v = 1
2 v2 in H . Hence v2 := (0, V 2) is a particular solution of (2)

for any β ∈R. We also put

N2 = {
v ∈ H : (I ′2(v)|v) = 0

} =
⎧⎨
⎩v ∈ H : ‖v‖2

2 − 1

2

∫
R

v3dx = 0

⎫⎬
⎭ .

Let us denote Tv2N the tangent space of v2 on N . Since

h = (h1,h2) ∈ Tv2N ⇐⇒ (V 2|h2)2 = 3

4

∫
R

V 2
2 h2 dx,

it follows that

(h1,h2) ∈ Tv2N ⇐⇒ h2 ∈ T V 2N2. (10)

Lemma 3. There exists � > 0 such that for β > �, then v2 is a saddle point of � constrained on N .

The proof follows the ideas in [2, Proposition 4.1(ii)]. We omit it for short.
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Remark 4. If one consider λ1 = λ2 as in [7], taking h0 = (V 2, 0) ∈ Tv2N in the proof of Lemma 3, one finds that

�′′(v2)[h0]2 = ‖V 2‖2
2 − β

∫
R

V 3
2 dx = (1 − 2β)‖V 2‖2

2 < 0 provided β >
1

2
.

See also Remark 5.

Proof of Theorem 1. We start proving that infN � is achieved at some positive function ũ ∈ H. To do so, by Ekeland’s 
variational principle [8], there exists a PS sequence {uk}k∈N ⊂N , i.e.,

�(uk) → c = inf
N

�, ∇N�(uk) → 0. (11)

By (6), one finds that {vk} is a bounded sequence on H, and without relabeling, we can assume that uk ⇀ u weakly in H, 
uk → u strongly in Lq

loc(R) = Lq
loc(R) × Lq

loc(R) for every 1 ≤ q < ∞ and uk → u a.e. in R2. Moreover, the constrained 
gradient ∇N�(uk) = �′(uk) − ηk�

′(uk) → 0, where ηk is the corresponding Lagrange multiplier. Taking the scalar product 
with uk and recalling that (�′(uk) | uk) = �(uk) = 0, we find that ηk(�

′(uk) | uk) → 0 and this, jointly with (4)–(5), implies 
that ηk → 0. Since, in addition, ‖� ′(uk)‖ ≤ C < +∞, we deduce that �′(uk) → 0.

Let us define μk = u2
k + v2

k , where uk = (uk, vk). By Lemma 2, applied in a similar way as in [4], we can prove that there 
exist R, C > 0 so that

sup
z∈R

∫
|z|<R

μk ≥ C > 0, ∀k ∈N. (12)

We observe that we can find a sequence of points {zk} ⊂ R
2 so that by (12), the translated sequence μk(x) = μk(x + zk)

satisfies

lim inf
k→∞

∫
B R (0)

μk ≥ C > 0.

Taking into account that μk → μ strongly in L1
loc(R), we obtain that μ 	≡ 0. Therefore, defining uk(x) = uk(x + zk), we have 

that uk is also a PS sequence for � on N , in particular the weak limit of uk , denoted by u, is a non-trivial critical point of 
� constrained on N , so u ∈N . Thus, using (6) again, we find

�(u) = F (u) ≤ lim inf
k→∞

F (uk) = lim inf
k→∞

�(uk) = c.

Furthermore, by Lemma 3 we know that necessarily �(u) < �(v2). Clearly ũ = |u| = (|u|, |v|) ∈N with

�(̃u) = �(u) = min{�(u) : u ∈ N }, (13)

and ̃u ≥ 0. Finally, by the maximum principle applied to each single equation and the fact that �(̃u) < �(v2), we get ̃u > 0.
To finish, taking into account that N is defined on H, we need to show that indeed

�(̃u) = min{�(u) : u ∈ N } = min{�(u) : u ∈ E, �′(u) = 0}, (14)

i.e., ũ is in fact a ground state of (2). To do so, we assume for a contradiction that there exists w0 ∈ E a non-trivial critical 
point of � such that �(w0) < �(̃u) = min{�(u) : u ∈ N }. Setting w = |w0|, for w = (w1, w2), we set w� = (w�

1, w
�
2), 

where w�
j is the Schwarz symmetric function associated to w j ≥ 0; j = 1, 2. Then, by the classical properties of the Schwarz 

symmetrization, there hold

‖w�‖2 ≤ ‖w‖2, Gβ(w�) ≥ Gβ(w),

where

Gβ(w) = 1
4

∫
R

w4
1 dx + 1

6

∫
R

w3
2 dx + 1

2 β

∫
R

w2
1 w2 dx.

Thus, in particular, �(w�) ≤ �(w) and by the fact that w0 is a critical point of �, we get �(w) = �(w0) = 0. Furthermore, 
after some computations,2 we have that there exists a unique 0 < t0 ≤ 1, so that t0 w� ∈N . Therefore,

2 The complete details can be seen in the expanded version [6].
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�(t0 w�) = 1

6
t2

0‖w�‖2 + 1

12
t4

0

∫
R

(w�
1)

4 dx ≤ 1

6
‖w‖2 + 1

12

∫
R

w4
1 dx = �(w),

proving that �(t0 w�) ≤ �(w) < �(̃u) = min{�(u) : u ∈N }, which is a contradiction with t0 w� ∈N . �
Remark 5. As we anticipated in the introduction (see also Remark 4), in the range of parameters studied by [7], λ1 = λ2
and β > 1

2 , we have found a positive ground state in contrast with the non-negative bound state founded by [7].

Theorem 6. There exists M > 0 such that if λ2 > M, System (2) has an even ground state ̃u > 0 for every β > 0.

Proof. Arguing in the same way as in the proof of Theorem 1, we initially have that there exists an even ground state ̃u ≥ 0. 
Moreover, in Theorem 1, for β > �, we proved that ũ > 0. In order to show that for β ≤ �, by the maximum principle, 
ũ > 0 provided ̃u 	= v2. Arguing in a similar way as in [2, Proposition 4.1(i)], v2 is a strict local minimum of � on N , but this 
does not allow us to prove that ̃u 	= v2. The new idea here consists in proving the existence of a function u1 = (u1, v1) ∈N
with �(u1) < �(v2). To do so, since v2 = (0, V 2) is a strict local minimum of � on N provided 0 < β < �, we cannot 
find u1 in a neighborhood of v2 on N . Thus, we define u1 = t(V 2, V 2) where t > 0 is the unique value, so that u1 ∈ N . To 
finish, after some computations3 comparing the energies of u1, v2, we find that �(u1) < �(v2) provided λ2 > M for some 
constant M > 0, which concludes the result. �

Note that we have found a positive even ground state for every β > 0.

3. Existence of bound sates

Finally, we establish the existence of positive bound states to (2) provided the coupling parameter is small by a pertur-
bation argument. Let us set u0 = (U1, V 2), where V 2 is given by (9) and U1(x) = √

2λ1 sech
(√

λ1x
)

is the unique positive 
solution of −u′′ + λ1u = u3 in H . Then we have the following.

Theorem 7. There exists ε0 > 0 such that, for any 0 < ε < ε0 and β = εβ̃ > 0, System (2) has an even bound state uε > 0 with 
uε → u0 as ε → 0.

In order to prove this result, we can follow some ideas of the proof of [5, Theorem 4.2] with appropriate modifications. 
To be short, the idea is that by the non-degeneracy of U1 and V 2 as critical points of their corresponding energy functionals 
on the radial space H , plainly u0 is a non-degenerate critical point of � on H, hence, an application of the local inversion 
theorem and some energy computations permit us to prove the existence of ε0 > 0 and a convergent sequence of critical 
points uε → u0 as ε → 0 for 0 < ε < ε0. It remains to show the positivity of uε , which relies on variational techniques in a 
similar way as in [5], with appropriate changes.

The last result dealing with bound states is the following.

Theorem 8. In the hypotheses of Theorem 6 and 0 < β < �, there exists an even bound state u∗ > 0 with �(u∗) > �(v2).

Proof. Following the ideas of [2, Proposition 4.1(i)] it is not difficult to show that v2 is a strict local minimum of � on 
N for 0 < β < �. The positive ground state ũ found in Theorem 6 satisfies �(̃u) < �(v2). As a consequence, we have the 
Mountain Pass (MP in short) geometry of � between ũ and v2 on N . We define the set of all continuous paths joining ũ
and v2 on the Nehari manifold by

� = {γ : [0,1] → N continuous | γ (0) = ũ, γ (1) = v2}.
Thanks to the MP Theorem by Ambrosetti and Rabinowitz; [3], there exists a PS sequence {uk} ⊂N , i.e.,

�(uk) → c = inf
N

�, ∇N�(uk) → 0,

where

c = inf
γ ∈�

max
0≤t≤1

�(γ (t)). (15)

Plainly, by (6) the sequence {uk} is bounded on H, and we obtain a weakly convergent subsequence uk ⇀ u∗ ∈N .

3 The complete details can be seen in the expanded version [6].
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The difficulty of the lack of compactness, due to work in the one-dimensional case, can be circumvented in a similar 
way as in the proof of Theorem 6. Thus, we find that the weak limit u∗ = (u∗, v∗) 	≡ 0 is an even bound state of (2), and 
clearly, �(u∗) > �(v2). It remains to prove that u∗ > 0; to do so, we consider the new problem:{−u′′ + λ1u = (u+)3 + βu+v

−v ′′ + λ2 v = 1
2 v2 + 1

2 β(u+)2.
(16)

By the maximum principle applied to the second equation, we have v > 0, and of course the first component u ≥ 0 by 
definition of problem (16). Repeating the previous arguments we show the existence of a MP critical point u∗ of (16). Also 
we can show that v2 is a strict local minimum of the corresponding functional �+ on the associated Nehari manifold N+ , 
besides the new difficulty that �+ is not C2, without using the second derivative of � on N . In order to finish, the positivity 
of u∗ and hence of u∗ follows by the maximum principle applied to the first equation and the fact that �(u∗) > �(v2). �

As a consequence of Theorems 6, 8, we have the following novelty and surprising result about non-uniqueness of positive 
solutions for (2).

Corollary 9. Assume 0 < β < � and λ2 > M. Then there exist at least two positive solutions of (2), given by the ground state ̃u (in 
Theorem 6) and the bound state u∗ (in Theorem 8).

Remark 10. (i) This result makes a great difference with the more studied systems of coupled NLS equations{−�u1 + λ1u1 = μ1u3
1 + βu2

2u1

−�u2 + λ2u2 = μ2u3
2 + βu2

1u2,

for which it is known that there is uniqueness of positive solutions, under appropriate conditions on the parameters in-
cluding the case β > 0 small; see for instance [12]. Indeed, for β > 0 small, the ground state is not positive, and it is 
given by one of the two semi-trivial solutions (U (1), 0) or (0, U (2)) depending on whether �(U (1), 0) is lower or greater 
than �(0, U (2)). Here U ( j) is the unique positive radial solution of −�u j + λ ju j = μ ju3

j in W 1,2(Rn), for n = 1, 2, 3 and 
j = 1, 2.

(ii) Following some ideas by Ambrosetti and Colorado in [2], Liu and Zheng proved in [11] a partial result on the existence 
of solutions to the corresponding system (2) in the dimensional case n = 2, 3. More precisely, in [11] the authors showed 
that the infimum of the energy functional on the corresponding Nehari manifold (defined on the radial Sobolev space) is 
achieved, but they do not proved that it is positive, and it was not shown that the infimum on the Nehari Manifold is a 
ground state, i.e., the least energy solution as we have proved here for n = 1; see the expanded version [6] for details and 
the more dimensional case n = 1, 2, 3. Also, in [11], the existence of other bound states was not investigated, as we have 
done in this manuscript in the one-dimensional case, n = 1, and in the expanded version [6] for the non-critical dimensions 
n = 2, 3, too.
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