Nous construisons une famille de suites strictement stationnaires et ergodiques pour lesquelles le théorème limite central n'a pas lieu. Ces exemples montrent que les conditions de McLeish pour le théorème limite central sont optimales en un sens précis.
We construct a family of stationary ergodic sequences for which the central limit theorem (CLT) does not hold. These examples show that McLeish's conditions for the CLT are sharp in a precise sense.
Accepté le :
Publié le :
@article{CRMATH_2015__353_6_557_0, author = {Dedecker, J\'er\^ome}, title = {On the optimality of {McLeish's} conditions for the central limit theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {557--561}, publisher = {Elsevier}, volume = {353}, number = {6}, year = {2015}, doi = {10.1016/j.crma.2015.03.010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.03.010/} }
TY - JOUR AU - Dedecker, Jérôme TI - On the optimality of McLeish's conditions for the central limit theorem JO - Comptes Rendus. Mathématique PY - 2015 SP - 557 EP - 561 VL - 353 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2015.03.010/ DO - 10.1016/j.crma.2015.03.010 LA - en ID - CRMATH_2015__353_6_557_0 ER -
%0 Journal Article %A Dedecker, Jérôme %T On the optimality of McLeish's conditions for the central limit theorem %J Comptes Rendus. Mathématique %D 2015 %P 557-561 %V 353 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2015.03.010/ %R 10.1016/j.crma.2015.03.010 %G en %F CRMATH_2015__353_6_557_0
Dedecker, Jérôme. On the optimality of McLeish's conditions for the central limit theorem. Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 557-561. doi : 10.1016/j.crma.2015.03.010. http://www.numdam.org/articles/10.1016/j.crma.2015.03.010/
[1] Principes d'invariance pour les champs aléatoires stationnaires, Université Paris-Sud, 1998 (Thesis No. 5515)
[2] Necessary and sufficient conditions for the conditional central limit theorem, Ann. Probab., Volume 30 (2002), pp. 1044-1081
[3] On the weak invariance principle for non-adapted sequences under projective criteria, J. Theor. Probab., Volume 20 (2007), pp. 971-1004
[4] A remark about a Markov process with normal transition operator, Third Vilnius Conference on Probability and Statistics, vol. 1, 1981, pp. 147-148
[5] Central limit theorems for time series regression, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 26 (1973), pp. 157-170
[6] The central limit theorem for time series regression, Stoch. Process. Appl., Volume 9 (1979), pp. 281-289
[7] On the central limit theorem for stationary processes, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 30 (1974), pp. 315-320
[8] On the exactness of the Wu–Woodroofe approximation, Stoch. Process. Appl., Volume 119 (2009), pp. 2158-2165
[9] Central limit theorem for additive functionals of Markov chains, Ann. Probab., Volume 28 (2000), pp. 713-724
[10] Invariance principles for dependent variables, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 32 (1975), pp. 165-178
[11] A new maximal inequality and invariance principle for stationary sequences, Ann. Probab., Volume 33 (2005), pp. 798-815
[12] On stable sequences of events, Sankhya, Ser. A, Volume 25 (1963), pp. 189-206
[13] Martingale approximation and optimality of some conditions for the central limit theorem, J. Theor. Probab., Volume 23 (2010), pp. 888-903
Cité par Sources :