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We construct a family of stationary ergodic sequences for which the central limit theorem 
(CLT) does not hold. These examples show that McLeish’s conditions for the CLT are sharp 
in a precise sense.
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r é s u m é

Nous construisons une famille de suites strictement stationnaires et ergodiques pour 
lesquelles le théorème limite central n’a pas lieu. Ces exemples montrent que les conditions 
de McLeish pour le théorème limite central sont optimales en un sens précis.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (�, A, P) be a probability space, and let T : � → � be a bijective, bi-measurable transformation preserving the 
probability P. We assume here that the couple (T , P) is ergodic, meaning that any A ∈ A satisfying T (A) = A has probability 
0 or 1. Let F0 be a σ -algebra of A satisfying F0 ⊆ T −1(F0). Let X0 be an F0-measurable, square integrable and centered 
random variable, and define the stationary sequence (Xi)i∈Z by Xi = X0 ◦ T i . Let then

Sn = X1 + X2 + · · · + Xn , and for t ∈ [0,1], Wn(t) = S[nt] + (nt − [nt])X[nt]+1.

Note that Wn is a random variable in the space (C([0, 1]), ‖ · ‖∞) of continuous bounded functions equipped with the 
uniform metric.

The following weak invariance principle (WIP) is essentially due to McLeish [10], Theorem 2.5. The present form, which 
can be deduced from Hannan’s criterion [5,6], has been stated in [2].

Theorem 1.1. Assume that there exists a sequence (an)n≥0 of positive numbers such that
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∑
n≥0

(
n∑

k=0

ak

)−1

< ∞ and
∑
n≥0

an‖E(Xn|F0)‖2
2 < ∞ . (1)

Then the series σ 2 = ∑
k∈Z Cov(X0, Xk) converges absolutely and n−1

E(S2
n) converges to σ 2 . Moreover, the process n−1/2Wn con-

verges in distribution in (C([0, 1]), ‖ · ‖∞) to σ W , where W is a standard Wiener process.

Remark 1. In [2], the ergodicity is not required, and Condition (1) is shown to be sufficient for the conditional WIP (which 
implies the stable convergence in the sense of Rényi [12]). In [10], the non-adapted case is also considered (i.e. X0 is not 
supposed to be F0-measurable). The non-adapted version of Theorem 1.1 is given in [3]. As quoted in [3], Condition (1)
holds as soon as∑

n≥1

‖E(Xn|F0)‖2√
n

< ∞ . (2)

Note that the CLT for n−1/2 Sn under (1) was already quoted in Annexe A.2 of my PhD thesis [1] (as a consequence of Heyde’s 
criterion [7]). At that time, my advisor Emmanuel Rio asked me whether the CLT could be true if 

∑
n≥0 ‖E(Xn|F0)‖2

2 <

∞ and n−1
E(S2

n) → σ 2. The answer is negative as I pointed out in Annexe A.3 of my PhD thesis (this is mentioned in 
Proposition 7 of [2] without proof).

Recently, the question was asked again by Christophe Cuny at the conference “Des martingales aux systèmes dynamiques” 
held in Marne-la-vallée (October 8–10, 2014). On this occasion, I showed him the counterexample of my PhD thesis, and he 
convinced me to write a note on the subject, and to give a more general statement. As we shall see in Corollary 2.4, the CLT 
is not true, even if an = ln(n ∨ e) in the second term of (1). I would like to thank here Christophe Cuny for his suggestion.

To be complete, note that the condition 
∑

n≥0 ‖E(Xn|F0)‖2
2 < ∞ is sufficient for the CLT when Xn = f (Yn) is a function 

of a normal Markov chain, and F0 = σ(Yi, i ≤ 0): this can be deduced from [4], as indicated to me by the referee. I would 
like to thank the referee, who also indicated to me Lemma 2.1 below, and the references [8] and [13].

2. Main result and discussion

Let us start with a preliminary remark. For any sequence (ψn)n≥0 of positive numbers such that 
∑

n≥0(
∑n

k=0 ψk)
−1 = ∞, 

one can find a sequence (un)n≥0 of positive numbers such that

∑
n≥0

un = ∞ and
∑
n≥0

ψn

( ∞∑
k=n

u2
k

)
< ∞. (3)

To see this, note that the second condition in (3) writes also 
∑

n≥0

(∑n
k=0 ψk

)
u2

n < ∞, and that the following lemma holds.

Lemma 2.1. Let (vn)n≥0 be a non-decreasing sequence of positive numbers. Then 
∑

n≥0 v−1
n = ∞ if and only if there exists a sequence 

(un)n≥0 of positive numbers such that 
∑

n≥0 un = ∞ and 
∑

n≥0 vnu2
n < ∞.

Proof of Lemma 2.1. If such a (un)n≥0 exists, then, writing un = un v1/2
n v−1/2

n and applying Cauchy–Schwarz’s inequality, we 
see that 

∑
n≥0 v−1

n = ∞. For the other implication, assume that 
∑

n≥0 v−1
n = ∞ and let yn = ∑n

k=0 v−1
k → ∞ and un =

(yn vn)−1. Since (yn)n≥0 and (vn)n≥0 are non-decreasing, one can see that un ≥ (yn vn+1)
−1 ≥ ∫ yn+1

yn
x−1dx and vn+1u2

n+1 ≤∫ yn+1
yn

x−2dx, and the results follow. �
We are now in position to state the main result of this note.

Theorem 2.2. Let (ψn)n≥0 be a sequence of positive numbers such that: ψn ≥ 1 for any nonnegative integer n, and∑
n≥0(

∑n
k=0 ψk)

−1 = ∞. For any sequence (un)n≥0 of positive numbers satisfying (3), there exists a stationary ergodic sequence 
(Xi)i∈Z of square integrable and centered random variables, such that

‖E(Xn|M0)‖2
2 ≤

∞∑
k=n

u2
k for M0 = σ(Xi, i ≤ 0), and lim

n→∞
1

n
E(S2

n) = 1, (4)

but the sequence n−1/2 Sn does not converge in distribution.

Remark 2. Note that, by (3) and the first part of (4), 
∑

n≥0 ψn‖E(Xn|M0)‖2
2 < ∞. Hence, Theorem 2.2 shows that the 

conditions of Theorem 1.1 on the sequence (an)n≥0 cannot be relaxed, if we assume moreover that an ≥ 1 for any nonneg-
ative integer n. Note that, by definition, M0 = σ(Xi, i ≤ 0) is the smallest σ -algebra such that X0 is M0-measurable and 
M0 ⊆ T −1(M0).
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Remark 3. One can modify the statement of Theorem 2.2 as follows: there exists a stationary ergodic sequence (Xi)i∈Z of 
square integrable and centered random variables, such that the first condition of (4) holds, but the sequence n−1/2 Sn is not 
stochastically bounded. It suffices to choose the sequence αi = ui(1[0,1/2] − 1]1/2,1]) in the construction of Section 3.

We now give some examples of weights satisfying the assumptions of Theorem 1.1 or Theorem 2.2.

Definition 2.3. For x > 0, let �1(x) = ln(x ∨ e), and for any integer k ≥ 2, define �k by induction as follows: for x > 0, 
�k(x) = �1 ◦ �k−1(x). For any positive integer k and any positive number a, define then

L1,a(x) = (�1(x))a and for k > 1, Lk,a(x) =
(

k−1∏
i=1

�i(x)

)
(�k(x))a .

The following corollary is a direct consequence of Theorem 1.1 and Theorem 2.2.

Corollary 2.4. For any positive integer k, the following statements hold:

1. If for some k ≥ 1 and a > 1, 
∑

n≥0 Lk,a(n)‖E(Xn|F0)‖2
2 < ∞, then Condition (1) is satisfied, and the conclusion of Theorem 1.1

holds.
2. For any k ≥ 1, there exists a stationary ergodic sequence (Xi)i∈Z of square integrable and centered random variables, such that ∑

n≥0 Lk,1(n)‖E(Xn|M0)‖2
2 < ∞ for M0 = σ(Xi, i ≤ 0) and n−1

E(S2
n) → 1, but the sequence n−1/2 Sn does not converge in 

distribution.

Let us mention that the counterexample given in Theorem 2.2 is different from the counterexample of Peligrad and 
Utev [11]. In Theorem 1.2 of their paper, they show that, for any sequence cn → 0, there exists a stationary ergodic sequence 
(Xi)i∈Z of square integrable and centered random variables (in their example Xi = g(Yi) where Yi is a countable Markov 
chain and F0 = σ(Yi, i ≤ 0)) such that

∞∑
n=1

cn
‖E(Sn|F0)‖2

n3/2
< ∞, (5)

but n−1/2 Sn is not stochastically bounded. This proves that the condition of Maxwell and Woodroofe [9] (Condition (5) with 
cn ≡ 1) for the CLT and the WIP (see again [11] for the WIP) is sharp (note that (2) also implies Maxwell–Woodroofe’s condi-
tion). The counterexample of Peligrad and Utev is different from ours because firstly we deal with the quantity ‖E(Xn|F0)‖2
instead of ‖E(Sn|F0)‖2, and secondly in our case n−1

E(S2
n) → 1, which implies the stochastic boundedness of n−1/2 Sn .

In the paper [13], there is an example of a stationary ergodic sequence such that ‖E(Sn |F0)‖2 = o(
√

n/ ln(n)) and the 
CLT fails, but again the variance does not grow linearly. In [8], there is an example for which ‖E(Sn|F0)‖2 = o(

√
n/ ln(n))

and n−1
E(S2

n) → 1 and the CLT fails.
In Remark 2 of [8], the authors ask the following question: does ‖E(Sn|F0)‖2 = o(

√
n/ ln(n)) and n−1

E(S2
n) → 1 imply 

the CLT? Thanks to Theorem 2.2, we are able to give a negative answer to this question: it suffices to take ψn ≡ 1 and 
un = (nL2,1(n))−1, which implies that ‖E(Xn|F0)‖2 = o(n−1/2/ ln(n)). Note that this also proves that condition (2) is sharp.

3. The counterexamples

For i ∈ Z, let Fi = T −i(F0), F−∞ = ∩i∈ZFi , and for i, k ∈ Z, let Pi(Xk) = E(Xk|Fi) −E(Xk|Fi−1). Clearly, if E(X0|F−∞) =
0 almost surely, then E(Xk|F0) = ∑

i≤0 Pi(Xk). The random variables Pi(Xk), P j(Xk) being orthogonal if i �= j, Pythagoras’s 
theorem and the stationarity imply that

‖E(Xn|F0)‖2
2 =

∞∑
k=n

‖P0(Xi)‖2
2. (6)

The construction of the sequences (Xi)i∈Z is based on the following lemmas (proofs in Section 4).

Lemma 3.1. Let T p,n = ∑p+n
i=p P p(Xi). If 

∑
n≥0 ‖E(Xn|F0)‖2

2 < ∞, then

lim
n→∞

‖E(Sn|F0)‖2√
n

= 0 and lim
n→∞

1√
n

∥∥∥∥∥∥Sn −
n∑

p=1

T p,n

∥∥∥∥∥∥
2

= 0. (7)
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Lemma 3.2. Let (H, ‖ · ‖H ) be an infinite dimensional Hilbert space. Let (un)n≥0 be a sequence of positive numbers such that ∑
n≥0 un = ∞ and un → 0. There exists an increasing sequence of positive integers (ti)i≥0 such that: for any orthonormal family 

(ei)i≥0 in H, there exists a sequence (hi)i≥0 satisfying

hti = ei, ‖h j − h j−1‖2
H ≤ u2

j for any j ≥ 1, (8)

and for ti < j < ti+1 , h j = b jei + c jei+1 with b2
j + c2

j = 1.

Let us now construct the sequence (Xi)i∈Z of Theorem 2.2. Let λ be the Lebesgue measure over [0, 1], and let B be the 
σ -algebra of Borel sets of [0, 1]. We denote by X the probability space X = ([0, 1], B, λ). Let (ψn)n≥0 and (un)n≥0 be two 
sequences as in Theorem 2.2. Let (αi)i≥0 be a sequence of functions in H = L

2(X ) (to be chosen latter) such that

λ(αi) = 0,

∥∥∥∥∥
n∑

i=0

αi

∥∥∥∥∥
2

2

= 1 and ‖αi‖2
2 ≤ u2

i . (9)

We consider the space � = X⊗Z and the probability P = λ⊗Z . The transformation T is the shift on � defined by 
(T (ω))i = ωi+1. Clearly P is invariant by T and the couple (T , P) is ergodic.

Starting from the sequence (αi)i≥0 and from the projections π j(ω) = ω j , we define the sequence (Ai)i≥0 of functions of 
L

2(P) by: Ai = αi ◦ π0. The sequence (Xi)i∈Z is then defined by:

X0 =
∞∑
j=0

A j ◦ T − j =
∞∑
j=0

α j ◦ π− j and Xi = X0 ◦ T i =
∞∑
j=0

A j ◦ T i− j. (10)

Note that these series are well defined in L2(P) because (A j ◦ T i− j) j≥0 is a sequence of independent random variables and ∑
j≥0 ‖A j ◦ T i− j‖2

2 = ∑
j≥0 ‖α j‖2

2 ≤ ∑
j≥0 u2

j < ∞.
Let Fi = σ(π j, j ≤ i). Clearly, X0 is F0-measurable and F−∞ is P-trivial by the 0 − 1 law. With the notations of 

the beginning of this section, we have P0(Xi) = Ai for any positive integer i. Hence, it follows from (6) and (9) that 
‖E(Xn|F0)‖2

2 ≤ ∑
k≥n u2

k . Note that this is also true with the σ -algebra M0 = σ(Xi, i ≤ 0), and the first condition of (4) is 
satisfied. On the other hand T p,n = ∑p+n

i=p P p(Xi) = ∑n
i=0 Ai ◦ T p . Hence, the sequence (T p,n)1≤p≤n is i.i.d. and

∥∥∥∥∥∥
1√
n

n∑
p=1

T p,n

∥∥∥∥∥∥
2

2

= ∥∥T0,n
∥∥2

2 =
∥∥∥∥∥

n∑
i=0

αi

∥∥∥∥∥
2

2

= 1, (11)

where the last equality follows from (9). Applying Lemma 3.1, we infer that limn→∞ n−1
E(S2

n) = 1, and (4) is fully satisfied.
It remains to choose αi in such a way that n−1/2 Sn does not converge in distribution. To do this, we use Lemma 3.2 with 

an appropriate orthonormal family (ei)i≥0 of L2(X ). Let first

fn = √
2n(1[0,2−n−1[ − 1[2−n−1,2−n[) and gn =

2n−1∑
k=0

(1[2k/2n+1,(2k+1)/2n+1[ − 1[(2k+1)/2n+1,(2k+2)/2n+1[).

Let (ti)i≥0 be the sequence of Lemma 3.2, and define e2i = ft2i and e2i+1 = gt2i+1 . Now, we put α0 = h0 and for i > 0, 
αi = hi − hi−1, where (hi)i≥0 is the sequence of Lemma 3.2. Applying Lemma 3.2, we see that (αi)i≥0 satisfies (9). By 
construction, 

∑t2n
i=0 αi = ft2n and 

∑t2n+1
i=0 αi = gt2n+1 .

Let us check that the two sequences t−1/2
2n St2n and t−1/2

2n+1 St2n+1 converge in distribution to two distinct laws. By Lemma 3.1, 
it is equivalent to consider the two sequences t−1/2

2n

∑t2n
p=1 T p,t2n and t−1/2

2n+1

∑t2n+1
p=1 T p,t2n+1 . Now

E

⎛
⎝exp

⎛
⎝ ix√

t2n

t2n∑
p=1

T p,t2n

⎞
⎠

⎞
⎠ =

(
λ

(
exp

(
ixft2n√

t2n

)))t2n

=
⎛
⎝1 − 1

2t2n

⎛
⎝1 − cos

⎛
⎝x

√
2t2n

t2n

⎞
⎠

⎞
⎠

⎞
⎠

t2n

.

Consequently limn→∞ E(exp(ixt−1/2
2n St2n )) = 1, proving that the sequence t−1/2

2n St2n converges in distribution to the Dirac 
mass at 0. On the other hand, the random variables (Ti,t2n+1 )1≤i≤t2n+1 are independent centered Rademacher random vari-

ables, so that t−1/2
2n+1

∑t2n+1
p=1 T p,t2n+1 and t−1/2

2n+1 St2n+1 converges in distribution to a standard normal. As a conclusion, the 
sequence n−1/2 Sn does not converge in distribution.
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4. Proofs of Lemmas 3.1 and 3.2

Proof of Lemma 3.1. We begin with the first part of (7). Since for any positive integer m, the sequence n−1/2‖E(Sm|F0)‖2
converges to 0 as n tends to infinity, it suffices to prove that

lim
m→∞ sup

n>m

1√
n
‖E(Sn − Sm|F0)‖2 = 0. (12)

Now ‖E(Sn − Sm|F0)‖2
2 = ∑n

i=m

∑n
j=m E 

(
E(Xi |F0)E(X j |F0)

) ≤ 2n 
∑n

i=m ‖E(Xi |F0)‖2
2, where the last bound holds because 

|E 
(
E(Xi |F0)E(X j|F0)

) | ≤ ‖E(Xi |F0)‖2‖E(X j |F0)‖2 ≤ ‖E(Xi |F0)‖2
2 as soon as j ≥ i. Hence, (12) follows easily from the fact 

that 
∑

n≥0 ‖E(Xn|F0)‖2
2 < ∞.

We now prove the second part of (7). Let S p,n = ∑n
i=p P p(Xi). By orthogonality and stationarity, one successively derives

1

n

∥∥∥∥∥∥Sn −E(Sn|F0) −
n∑

p=1

T p,n

∥∥∥∥∥∥
2

2

= 1

n

∥∥∥∥∥∥
n∑

p=1

S p,n −
n∑

p=1

T p,n

∥∥∥∥∥∥
2

2

= 1

n

n∑
p=1

∥∥∥∥∥∥
p+n∑

i=n+1

P p(Xi)

∥∥∥∥∥∥
2

2

= 1

n

n∑
p=1

∥∥∥∥∥∥
n∑

i=n+1−p

P0(Xi)

∥∥∥∥∥∥
2

2

= 1

n

n∑
p=1

∥∥∥∥∥∥
n∑

i=p

P0(Xi)

∥∥∥∥∥∥
2

2

. (13)

Let βp = ∑∞
i=p i‖P0(Xi)‖2

2 (which is finite because of (6) and the fact that 
∑

n≥0 ‖E(Xn|F0)‖2
2 < ∞). Using Cauchy–Schwarz’s 

inequality in �2, we get

1

n

n∑
p=1

∥∥∥∥∥∥
n∑

i=p

P0(Xi)

∥∥∥∥∥∥
2

2

≤ 1

n

n∑
p=1

βp

⎛
⎝ n∑

i=p

1

i

⎞
⎠ = 1

n

n∑
i=1

⎛
⎝1

i

i∑
p=1

βp

⎞
⎠ ,

and the last term converges to zero as n → ∞, by using Cesàro’s lemma and the fact that βn → 0. Together with (13) and 
the first part of (7), this completes the proof of the second part of (7). �
Proof of Lemma 3.2. Let (un)n≥0 be as in Lemma 3.2 (without loss of generality, assume that un < π/2 for any positive 
integer n). Define then the increasing sequence (ti)i≥0 by induction:

t0 = 0, and ti+1 is the unique n > ti + 1 such that
n−1∑

k=ti+1

uk <
π

2
≤

n∑
k=ti+1

uk.

The function h j is then defined by hti = ei and, for ti < j < ti+1,

h j = cos

⎛
⎝ j∑

k=ti+1

uk

⎞
⎠ ei + sin

⎛
⎝ j∑

k=ti+1

uk

⎞
⎠ ei+1.

By construction 〈h j, h j−1〉 ≥ cos(u j). Hence ‖h j − h j−1‖2
H ≤ 2(1 − cos(u j)) ≤ u2

j . �
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