Notre propos dans cette Note est d'étudier quelques propriétés de base des polynômes de Chebyshev habituels en théorie des fonctions analytiques. Nous considérons plusieurs caractéristiques fondamentales pour les classes , de fonctions f satisfaisant , , analytiques dans le disque unité ouvert et telles que pour , on ait :
Our objective in this paper is to consider some basic properties of the familiar Chebyshev polynomials in the theory of analytic functions. We investigate some basic useful characteristics for a class , , of functions f, with , , analytic in the open unit disc satisfying the condition that
Accepté le :
Publié le :
@article{CRMATH_2015__353_5_433_0, author = {Dziok, Jacek and Raina, Ravinder Krishna and Sok\'o{\l}, Janusz}, title = {Application of {Chebyshev} polynomials to classes of analytic functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {433--438}, publisher = {Elsevier}, volume = {353}, number = {5}, year = {2015}, doi = {10.1016/j.crma.2015.02.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.02.001/} }
TY - JOUR AU - Dziok, Jacek AU - Raina, Ravinder Krishna AU - Sokół, Janusz TI - Application of Chebyshev polynomials to classes of analytic functions JO - Comptes Rendus. Mathématique PY - 2015 SP - 433 EP - 438 VL - 353 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2015.02.001/ DO - 10.1016/j.crma.2015.02.001 LA - en ID - CRMATH_2015__353_5_433_0 ER -
%0 Journal Article %A Dziok, Jacek %A Raina, Ravinder Krishna %A Sokół, Janusz %T Application of Chebyshev polynomials to classes of analytic functions %J Comptes Rendus. Mathématique %D 2015 %P 433-438 %V 353 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2015.02.001/ %R 10.1016/j.crma.2015.02.001 %G en %F CRMATH_2015__353_5_433_0
Dziok, Jacek; Raina, Ravinder Krishna; Sokół, Janusz. Application of Chebyshev polynomials to classes of analytic functions. Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 433-438. doi : 10.1016/j.crma.2015.02.001. http://www.numdam.org/articles/10.1016/j.crma.2015.02.001/
[1] On the integral convolution of certain classes of analytic functions, Taiwanese J. Math., Volume 13 (2009) no. 5, pp. 1387-1396
[2] A general solution of the Fekete–Szegö problem, Bound. Value Probl. (2013) (Aricle ID 2013:98)
[3] Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comput. Math. Appl., Volume 61 (2011) no. 9, pp. 2605-2613
[4] On alpha-convex functions related to shell-like functions connected with Fibonacci numbers, Appl. Math. Comput., Volume 218 (2011), pp. 966-1002
[5] On uniformly convex functions, Ann. Polon. Math., Volume 56 (1991), pp. 87-92
[6] Some problems for certain family of starlike functions, Math. Comp. Modelling, Volume 55 (2012), pp. 2134-2140
[7] Linear operators associated with k-uniformly convex functions, Integral Transforms Spec. Funct., Volume 9 (2000) no. 2, pp. 121-132
[8] Conic regions and k-uniform convexity II, Folia Sci. Univ. Tech. Resov., Volume 22 (1998), pp. 65-78
[9] Conic regions and k-uniform convexity, J. Comput. Appl. Math., Volume 105 (1999), pp. 327-336
[10] Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl., Volume 45 (2000), pp. 647-657
[11] Geometric properties of subclasses of starlike functions, J. Comput. Appl. Math., Volume 155 (2003), pp. 383-387
[12] Uniformly convex functions, Ann. Polon. Math., Volume 57 (1992) no. 2, pp. 165-175
[13] Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., Volume 118 (1993), pp. 189-196
[14] On some subclass of strongly starlike functions, Demonstratio Math., Volume 31 (1998) no. 1, pp. 81-86
[15] On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, Volume 175 (1999), pp. 111-116
[16] A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes of Analytic Functions with an Account of the Principal Transcendental Function, Cambridge University Press, 1963
Cité par Sources :