Complex analysis
Application of Chebyshev polynomials to classes of analytic functions
[Application des polynômes de Chebyshev à des classes de fonctions analytiques]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 433-438.

Notre propos dans cette Note est d'étudier quelques propriétés de base des polynômes de Chebyshev habituels en théorie des fonctions analytiques. Nous considérons plusieurs caractéristiques fondamentales pour les classes H(t), t(1/2,1] de fonctions f satisfaisant f(0)=0, f(0)=1, analytiques dans le disque unité ouvert U={z:|z|<1} et telles que pour zU, on ait :

1+zf(z)f(z)H(z,t),
H(z,t)=1/(12tz+z2) désigne la fonction génératrice des polynômes de Chebyshev de seconde espèce. Nous résolvons également le problème de Fekete–Szegö pour les classes considérées.

Our objective in this paper is to consider some basic properties of the familiar Chebyshev polynomials in the theory of analytic functions. We investigate some basic useful characteristics for a class H(t), t(1/2,1], of functions f, with f(0)=0, f(0)=1, analytic in the open unit disc U={z:|z|<1} satisfying the condition that

1+zf(z)f(z)H(z,t)=112tz+z2(zU),
where H(z,t) is the generating function of the second kind of Chebyshev polynomials. The Fekete–Szegö problem in the class is also solved.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.02.001
Dziok, Jacek 1 ; Raina, Ravinder Krishna 2 ; Sokół, Janusz 3

1 Faculty of Mathematics and Natural Sciences, University of Rzeszów, Poland
2 M.P. University of Agriculture and Technology, Udaipur, India
3 Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
@article{CRMATH_2015__353_5_433_0,
     author = {Dziok, Jacek and Raina, Ravinder Krishna and Sok\'o{\l}, Janusz},
     title = {Application of {Chebyshev} polynomials to classes of analytic functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {433--438},
     publisher = {Elsevier},
     volume = {353},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crma.2015.02.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.02.001/}
}
TY  - JOUR
AU  - Dziok, Jacek
AU  - Raina, Ravinder Krishna
AU  - Sokół, Janusz
TI  - Application of Chebyshev polynomials to classes of analytic functions
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 433
EP  - 438
VL  - 353
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.02.001/
DO  - 10.1016/j.crma.2015.02.001
LA  - en
ID  - CRMATH_2015__353_5_433_0
ER  - 
%0 Journal Article
%A Dziok, Jacek
%A Raina, Ravinder Krishna
%A Sokół, Janusz
%T Application of Chebyshev polynomials to classes of analytic functions
%J Comptes Rendus. Mathématique
%D 2015
%P 433-438
%V 353
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.02.001/
%R 10.1016/j.crma.2015.02.001
%G en
%F CRMATH_2015__353_5_433_0
Dziok, Jacek; Raina, Ravinder Krishna; Sokół, Janusz. Application of Chebyshev polynomials to classes of analytic functions. Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 433-438. doi : 10.1016/j.crma.2015.02.001. http://www.numdam.org/articles/10.1016/j.crma.2015.02.001/

[1] Bednarz, U.; Sokół, J. On the integral convolution of certain classes of analytic functions, Taiwanese J. Math., Volume 13 (2009) no. 5, pp. 1387-1396

[2] Dziok, J. A general solution of the Fekete–Szegö problem, Bound. Value Probl. (2013) (Aricle ID 2013:98)

[3] Dziok, J.; Raina, R.K.; Sokół, J. Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comput. Math. Appl., Volume 61 (2011) no. 9, pp. 2605-2613

[4] Dziok, J.; Raina, R.K.; Sokół, J. On alpha-convex functions related to shell-like functions connected with Fibonacci numbers, Appl. Math. Comput., Volume 218 (2011), pp. 966-1002

[5] Goodman, A.W. On uniformly convex functions, Ann. Polon. Math., Volume 56 (1991), pp. 87-92

[6] Jurasinska, R.; Sokół, J. Some problems for certain family of starlike functions, Math. Comp. Modelling, Volume 55 (2012), pp. 2134-2140

[7] Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions, Integral Transforms Spec. Funct., Volume 9 (2000) no. 2, pp. 121-132

[8] Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity II, Folia Sci. Univ. Tech. Resov., Volume 22 (1998), pp. 65-78

[9] Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity, J. Comput. Appl. Math., Volume 105 (1999), pp. 327-336

[10] Kanas, S.; Wiśniowska, A. Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl., Volume 45 (2000), pp. 647-657

[11] Lecko, A.; Wiśniowska, A. Geometric properties of subclasses of starlike functions, J. Comput. Appl. Math., Volume 155 (2003), pp. 383-387

[12] Ma, W.; Minda, D. Uniformly convex functions, Ann. Polon. Math., Volume 57 (1992) no. 2, pp. 165-175

[13] Rønning, F. Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., Volume 118 (1993), pp. 189-196

[14] Sokół, J. On some subclass of strongly starlike functions, Demonstratio Math., Volume 31 (1998) no. 1, pp. 81-86

[15] Sokół, J. On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, Volume 175 (1999), pp. 111-116

[16] Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes of Analytic Functions with an Account of the Principal Transcendental Function, Cambridge University Press, 1963

Cité par Sources :