Dans cet article, nous montrons d'abord que deux formes de contact conformes quelconques sur une variété compacte CR qui ont la même courbure de Ricci pseudo-hermitienne ne diffèrent que d'un facteur constant. Dans une autre direction, nous prouvons un analogue CR du lemme de Schwarz conforme de la géométrie riemannienne.
In this paper, we first prove that any two conformal contact forms on a compact CR manifold that have the same pseudo-Hermitian Ricci curvature must be different by a constant. In another direction, we prove a CR analogue of the conformal Schwarz lemma of Riemannian geometry.
Accepté le :
Publié le :
@article{CRMATH_2015__353_2_167_0, author = {Ho, Pak Tung}, title = {Rigidity in a conformal class of contact form on {CR} manifold}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--172}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.11.010}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.11.010/} }
TY - JOUR AU - Ho, Pak Tung TI - Rigidity in a conformal class of contact form on CR manifold JO - Comptes Rendus. Mathématique PY - 2015 SP - 167 EP - 172 VL - 353 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.11.010/ DO - 10.1016/j.crma.2014.11.010 LA - en ID - CRMATH_2015__353_2_167_0 ER -
Ho, Pak Tung. Rigidity in a conformal class of contact form on CR manifold. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 167-172. doi : 10.1016/j.crma.2014.11.010. http://www.numdam.org/articles/10.1016/j.crma.2014.11.010/
[1] Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics, vol. 246, Birkhäuser Boston, Boston, MA, USA, 2006
[2] The long time existence and convergence of the CR Yamabe flow, Commun. Contemp. Math., Volume 14 (2012) no. 2 article ID (50 p.)
[3] Results related to prescribing pseudo-Hermitian scalar curvature, Int. J. Math., Volume 24 (2013) no. 3 article ID 1350020 (29 p.)
[4] The Yamabe problem on CR manifolds, J. Differ. Geom., Volume 25 (1987), pp. 167-197
[5] Scalar curvature of a metric with unit volume, Math. Ann., Volume 279 (1987), pp. 253-265
[6] The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc., Volume 296 (1986), pp. 411-429
[7] Conformal entropy rigidity through Yamabe flows, Math. Ann., Volume 353 (2012), pp. 333-357
[8] Prescribing a Ricci tensor in a conformal class of Riemannian metrics, Proc. Amer. Math. Soc., Volume 115 (1992), pp. 455-459
[9] Remarks on conformal transformations, J. Differ. Geom., Volume 8 (1973), pp. 369-381
[10] The contact Yamabe flow, University of Hanover, Germany, 2006 (Ph.D. thesis)
Cité par Sources :