Partial differential equations/Mathematical problems in mechanics
Existence result for a one-dimensional eikonal equation
[Résultat d'existence pour l'équation eikonale unidimensionnelle]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 133-137.

Dans cette Note, nous considérons l'équation eikonale en une dimension d'espace décrivant le mouvement d'interfaces avec une vitesse non signée. Nous prouvons un résultat d'existence globale de solutions de viscosité discontinues dans un sens faible en considérant des données initiales BV.

In this Note, we consider the eikonal equation in one-dimensional space describing the evolution of interfaces moving with non-signed velocity. We prove a global existence result of discontinuous viscosity solutions in a weak sense by considering BV initial data.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.11.008
Boudjerada, Rachida 1 ; El Hajj, Ahmad 2 ; Moulay, Mohamed Said 1

1 Université des Sciences et de la Technologie Houari Boumediene, AMNEDP, BP32, Bab Ezzouar, Alger, Algeria
2 Université de technologie de Compiègne, LMAC, 60205 Compiègne cedex, France
@article{CRMATH_2015__353_2_133_0,
     author = {Boudjerada, Rachida and El Hajj, Ahmad and Moulay, Mohamed Said},
     title = {Existence result for a one-dimensional eikonal equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {133--137},
     publisher = {Elsevier},
     volume = {353},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crma.2014.11.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.11.008/}
}
TY  - JOUR
AU  - Boudjerada, Rachida
AU  - El Hajj, Ahmad
AU  - Moulay, Mohamed Said
TI  - Existence result for a one-dimensional eikonal equation
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 133
EP  - 137
VL  - 353
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.11.008/
DO  - 10.1016/j.crma.2014.11.008
LA  - en
ID  - CRMATH_2015__353_2_133_0
ER  - 
%0 Journal Article
%A Boudjerada, Rachida
%A El Hajj, Ahmad
%A Moulay, Mohamed Said
%T Existence result for a one-dimensional eikonal equation
%J Comptes Rendus. Mathématique
%D 2015
%P 133-137
%V 353
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.11.008/
%R 10.1016/j.crma.2014.11.008
%G en
%F CRMATH_2015__353_2_133_0
Boudjerada, Rachida; El Hajj, Ahmad; Moulay, Mohamed Said. Existence result for a one-dimensional eikonal equation. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 133-137. doi : 10.1016/j.crma.2014.11.008. http://www.numdam.org/articles/10.1016/j.crma.2014.11.008/

[1] Alvarez, O.; Cardaliaguet, P.; Monneau, R. Existence and uniqueness for dislocation dynamics with nonnegative velocity, Interfaces Free Bound., Volume 7 (2005), pp. 415-434

[2] Alvarez, O.; Hoch, P.; Le Bouar, Y.; Monneau, R. Dislocation dynamics: short-time existence and uniqueness of the solution, Arch. Ration. Mech. Anal., Volume 181 (2006), pp. 449-504

[3] Barles, G. Solutions de viscosité des équations de Hamilton–Jacobi, Mathématiques et Applications (Berlin), Mathematics & Applications, vol. 17, Springer-Verlag, Paris, 1994

[4] Barles, G.; Ley, O. Nonlocal first-order Hamilton–Jacobi equations modelling dislocations dynamics, Commun. Partial Differ. Equ., Volume 31 (2006), pp. 1191-1208

[5] Barles, G.; Perthame, B. Comparison principle for Dirichlet-type Hamilton–Jacobi equations and singular perturbations of degenerated elliptic equations, Appl. Math. Optim., Volume 21 (1990), pp. 21-44

[6] Barles, G.; Soner, H.M.; Souganidis, P.E. Front propagation and phase field theory, SIAM J. Control Optim., Volume 31 (1993), pp. 439-496

[7] Barles, G.; Cardaliaguet, P.; Ley, O.; Monneau, R. Global existence results and uniqueness for dislocation equations, SIAM J. Math. Anal., Volume 40 (2008), pp. 44-69

[8] Ley, O. Lower bound gradient estimates for first-order Hamilton–Jacobi equations and applications to the regularity of propagation fronts, Adv. Differ. Equ., Volume 6 (2001), pp. 547-576

[9] Simon, J. Compacts sets in the space Lp(0,T;B), Ann. Mat. Pura Appl. (4), Volume 146 (1987), pp. 65-96

Cité par Sources :