Differential geometry
Heat equation in a model matrix geometry
[L'équation de la chaleur pour une géométrie matricielle modèle]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 351-355.

Dans cet article, nous étudions l'équation de la chaleur pour la géométrie matricielle modèle Mn. Nos principaux résultats concernent le comportement global de l'équation de la chaleur. Nous parvenons à montrer que, si la matrice initiale c0 est définie positive dans Mn, alors c(t) existe pour tout temps et reste définie positive. Nous montrons également la stabilité de l'entropie des solutions de l'équation de la chaleur.

In this paper, we study the heat equation in a model matrix geometry Mn. Our main results are about the global behavior of the heat equation on Mn. We can show that if c0 is the initial positive definite matrix in Mn, then c(t) exists for all time and is positive definite too. We can also show the entropy stability of the solutions to the heat equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.10.024
Li, Jiaojiao 1

1 Department of Mathematics, Henan Normal University, Xinxiang, 453007, China
@article{CRMATH_2015__353_4_351_0,
     author = {Li, Jiaojiao},
     title = {Heat equation in a model matrix geometry},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {351--355},
     publisher = {Elsevier},
     volume = {353},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crma.2014.10.024},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2014.10.024/}
}
TY  - JOUR
AU  - Li, Jiaojiao
TI  - Heat equation in a model matrix geometry
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 351
EP  - 355
VL  - 353
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2014.10.024/
DO  - 10.1016/j.crma.2014.10.024
LA  - en
ID  - CRMATH_2015__353_4_351_0
ER  - 
%0 Journal Article
%A Li, Jiaojiao
%T Heat equation in a model matrix geometry
%J Comptes Rendus. Mathématique
%D 2015
%P 351-355
%V 353
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2014.10.024/
%R 10.1016/j.crma.2014.10.024
%G en
%F CRMATH_2015__353_4_351_0
Li, Jiaojiao. Heat equation in a model matrix geometry. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 351-355. doi : 10.1016/j.crma.2014.10.024. http://www.numdam.org/articles/10.1016/j.crma.2014.10.024/

[1] Bhuyain, T.A.; Marcolli, M. The Ricci flow on noncommutative two tori, Lett. Math. Phys., Volume 101 (2012), pp. 173-194

[2] Chicone, C. Ordinary Differential Equations with Applications, Springer Science+Business Media, 2006

[3] Connes, A. Noncommutative Geometry, Academic Press, New York, 1994

[4] Connes, A.; Moscovici, H. Modular curvature for noncommutative two tori, J. Amer. Math. Soc., Volume 27 (2014), pp. 639-684

[5] Connes, A.; Tretkoff, P. The Gauss–Bonnet theorem for the noncommutative two torus, Noncommutative Geometry, Arithmetic, and Related Topics, Johns Hopkins University Press, Baltimore, MD, USA, 2011, pp. 141-158

[6] Dabrowski, L.; Sitarz, A. Curved noncommutative torus and Gauss–Bonnet, J. Math. Phys., Volume 54 (2013), p. 013518

[7] Dai, X.Z.; Ma, Li Mass under the Ricci flow, Commun. Math. Phys., Volume 274 (2007) no. 1, pp. 65-80

[8] Duvenhage, R. Noncommutative Ricci flow in a matrix geometry, J. Phys. A, Math. Theor., Volume 47 (2014), p. 045203

[9] Fannes, M. A continuity property of the entropy density for spin lattice systems, Commun. Math. Phys., Volume 31 (1973), pp. 291-294

[10] Fathizadeh, F.; Khalkhali, M. Scalar curvature for the noncommutative two torus, J. Noncommut. Geom., Volume 7 (2013), pp. 1145-1183

[11] Friedan, D. Nonlinear models in 2+e dimensions, Phys. Rev. Lett., Volume 45 (1980), pp. 1057-1060

[12] Friedan, D. Nonlinear models in 2+e dimensions, Ann. Phys., Volume 163 (1985), pp. 318-419

[13] Hamilton, R.S. Three-manifolds with positive Ricci curvature, J. Differ. Geom., Volume 17 (1982), pp. 255-306

[14] Hamilton, R.S. The Ricci flow on surfaces, Santa Cruz, CA, USA, 1986 (Contemp. Math.), Volume vol. 71 (1988), pp. 237-262

[15] Headrick, M.; Wiseman, T. Ricci flow and black holes, Class. Quantum Gravity, Volume 23 (2006), pp. 6683-6707

[16] Hoppe, J. Quantum theory of a massless relativistic surface and a two dimensional bound state problem, Massachusetts Institute of Technology, Cambridge, MA, 1982 (Ph.D. thesis)

[17] Landi, G.; Lizzi, F.; Szabo, R.J. From large N matrices to the noncommutative torus, Commun. Math. Phys., Volume 217 (2001), pp. 181-201

[18] Latremoliere, F. Approximation of quantum tori by finite quantum tori for the quantum Gromov–Hausdorff distance, J. Funct. Anal., Volume 223 (2005), pp. 365-395

[19] Madore, J. An Introduction to Noncommutative Differential Geometry and Its Physical Applications, Cambridge University Press, Cambridge, UK, 1999

[20] Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000

[21] Rosenberg, S. The Laplacian in a Riemannian Manifold, Lond. Math. Soc. Stud. Texts, vol. 31, Cambridge University Press, 1997

[22] Singer, I.M. Eigenvalues of the Laplacian and invariants of manifolds, Vancouver (1974)

Cité par Sources :

The research is partially supported by the National Natural Science Foundation of China (No. 11301158, No. 11271111).