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In this paper, we study the heat equation in a model matrix geometry Mn. Our main results 
are about the global behavior of the heat equation on Mn. We can show that if c0 is the 
initial positive definite matrix in Mn, then c(t) exists for all time and is positive definite 
too. We can also show the entropy stability of the solutions to the heat equation.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cet article, nous étudions l’équation de la chaleur pour la géométrie matricielle 
modèle Mn . Nos principaux résultats concernent le comportement global de l’équation de 
la chaleur. Nous parvenons à montrer que, si la matrice initiale c0 est définie positive dans 
Mn , alors c(t) existe pour tout temps et reste définie positive. Nous montrons également la 
stabilité de l’entropie des solutions de l’équation de la chaleur.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In Riemannian geometry, the spectrum of the Laplacian operator on a compact Riemannian manifold gives geometric and 
topological information about the manifold. The heat equation proof of the Atiyah–Singer index theorem is one of the most 
famous examples [22]. In particular, through the use of the heat equation, one can define the curvature of the compact 
n-dimensional Riemannian manifold (M, g) as below. Let H(x, y, t) be the heat kernel of the Laplacian operator [21]. Let 
(λ j) be the spectrum and {φ j(x)} the corresponding eigenfunctions on M . Then the heat kernel H(x, y, t) can be written as

H(x, y, t) =
∑

j

e−λ jtφ j(x)φ j(y).

Then we have the expansion

(4πt)n/2 H(x, x, t) = 1 + t

3
R + 0

(
t2)
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near t = 0. Here R is the scalar curvature of the metric g . This implies that we can define the scalar curvature by the 
formula:

R = 3
d

dt

∣∣∣∣
t=0

[
(4πt)n/2 H(x, x, t)

]
.

Hence, it is natural to use the heat equation to define the scalar curvature in the non-commutative geometry [2–6,10,17,18]. 
The aim of this paper is to explore the properties of heat equation in a simple case, which has been recently studied by 
R. Duvenhage in [8]. In [8], the author has introduced the Ricci flow and his main results can be briefly stated as follows. 
Let Mn be the C∗ algebra generated by the two matrices [19]

u = e2π ix/n, v = e2π iy/n,

where x, y are two Hermitian matrices on Cn . Define the derivations on Mn

δ1 := [y, ·], δ2 := −[x, ·]
and the Laplacian operator

� = δ2
1 + δ2

2 .

Then the Ricci flow can be defined by [8]:

d

dt
c(t) = −� log c(t).

For any positive definite matrix c0 ∈ Mn , there is a global solution c(t) to the Ricci flow for all positive t , and the solution 
converges to the scalar matrix determined by the initial data c0. Furthermore, along this flow, the von Neumann entropy of 
the solution c(t) is increasing, except c0, which is a scalar matrix.

We can introduce the eigenvalues and eigenfunctions of the Laplacian operator � in the same Mn and define the heat 
kernel and the scalar curvature as above. Then we can introduce the Ricci flow in the standard way as

d

dt
c(t) = R

(
c(t)

)
c(t)

for the positive definite matrix c(t). This gives the fourth way to define the Ricci flow in non-commutative geometry. 
However, because there is no explicit relation about the scalar curvature and the matrix c(t), this approach may be very 
complicated for us to get a global Ricci flow as in [13,14]. The Ricci flow has been used to find many interesting applications 
in physics. It appears as the renormalization group equations of 2-dimensional sigma models [11,12]. It can be used to study 
the evolution of the ADM mass in asymptotically flat spaces [7]. More recently, it appears in the study of the contribution of 
black holes in Euclidean quantum gravity [16,15]. In [1], the author describes an appropriate analog of Hamilton’s Ricci flow 
for the noncommutative two tori, which is the prototype example of noncommutative manifolds. It is still an interesting 
question to find more ways to define the Ricci flow in noncommutative geometry.

Our main results are about the global behavior of the heat equation on Mn . We can show that if c0 is the initial positive 
definite matrix in Mn , then the solution c(t) exists for all t ≥ 0 and is positive definite too. We can also show the entropy 
stability of the solutions of the heat equation. The plan of the paper is below. In Section 2, we recall some properties of the 
noncommutative geometry model Mn . In Section 3, we study the behavior of the solution of the heat equation on Mn . We 
consider the entropy stability of the solutions of the heat equation in Section 4.

2. Elementary noncommutative differential geometry

Let x, y be two Hermitian matrices on Cn . Define u = e
2π i

n x , v = e
2π i

n y . We use Mn to denote the algebra of all n × n
complex matrices generated by U and V with the bracket [u, v] = uv − vu. Then C I , which is the scalar multiple of the 
identity matrices I , is the commutator of the operation [u, v]. Sometimes we simply use 1 to denote the n × n identity 
matrix.

We define two derivations δ1 and δ2 on the algebra Mn by the commutators

δ1 := [y, ·], δ2 := −[x, ·].
Define the Laplacian operator on Mn by

� = δ2
1 + δ2

2 = δμδμ,

where we have used the Einstein sum convention. We use the Hilbert–Schmidt norm defined by the inner product

〈a,b〉 = τ
(
a∗b

)

on the algebra Mn . Here a∗ is the Hermitian adjoint of the matrix a and τ denotes the usual trace function on Mn . We now 
state basic properties of δ1, δ2 and � [8,19] as follows.
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Proposition 2.1. There exists a positive constant c such that for any a ∈ Mn,

c|a − ā|2 ≤ 〈
δμ(a − ā), δμ(a − ā)

〉 ≤ c−1|a − ā|2,
where ā = τ (a)

n I and τ (a) denotes the trace of a.

Proof. Define

|a − ā|1 = 〈
δμ(a − ā), δμ(a − ā)

〉 1
2

and we can verify that | · |1 is a norm on Mn/C I .
We need to verify the following three conditions.

(1) For ā = 0, if |a|1 = 0 ⇔ δμ(a) = 0, μ = 1, 2. Then by [8], we know that a ∈ C I . So a = ā = 0.
(2) ∀λ > 0, |λa|1 = |λ||a|1 is clearly true.
(3) ∀a, b ∈ Mn/C I , it is also true that

|a + b|1 ≤ |a|1 + |b|1.
Since Mn/C I is a finite-dimension vector space, the Hilbert–Schmidt norm | · | is equivalent to | · |1 on Mn/C I . �
The following result is basically proved in Proposition 3.1 in [8] and we refer to [8] for the proof.

Proposition 2.2. For any positive definite matrix a ∈ Mn, ∀m ∈ Z , we have

τ
(
am�a

) ≥ 0

with equality if and only if a ∈ C I , i.e. if and only if a is a scalar multiple of the identity matrix I .

3. Heat equation

In this section, we study the heat equation

ut = −�u, u ∈ Mn, (3.1)

with the initial data u|t=0 = u0.
The heat equation (3.1) can be considered as an ODE on Mn , so it has a local unique solution u = u(t) for small t > 0.
We now study the global property of the solution u(t). Note that ūt = 1

n
d
dt τ (u) = 1

n τ (ut) = − 1
n τ (�u) = 0. Applying 

Proposition 2.1, we obtain:

d

dt
|u − ū|2 = 〈u − ū, ut〉 + 〈ut, u − ū〉

= −〈u − ū,�u〉 − 〈�u, u − ū〉
= −2〈δμu, δμu〉
≤ −2c|u − ū|2.

Note that

|u − ū|2(t) ≤ |u − ū|2(0)e−2ct → 0 (3.2)

as t → ∞. The heat equation (3.1) has a unique global solution for t ≥ 0 and ū = limt→∞ u(t) = ū0. We see from (3.2) that 
if the initial data u(0) is Hermitian, then the solution u(t) is also Hermitian. In fact, let u(t) and v(t) be two solutions 
corresponding to the initial datum u(0) and u∗(0), respectively. Let W (t) = u(t) − v(t). Then W (0) = 0. By (3.2), we have 
W (t) = 0 for t > 0. Note that by Proposition 2.1 in [8], we know that

u∗
t = (ut)

∗ = −(�u)∗ = −(δμδμu)∗ = δμ(δμu)∗ = −δμδμu∗ = −�u∗.
By (3.2), we have v(t) = u∗(t). Then u(t) = v(t) = u∗(t) for t > 0, which implies that u(t) is Hermitian.

Assume u0 > 0, we claim that u(t) > 0. Here is the proof. We compute:

d

dt
log det u = τ

(
u−1ut

)

= −τ
(
u−1�u

)

= −〈
u−1,�u

〉

= −〈
δμu−1, δμu

〉
.
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Note that

δ1u−1 = [
y, u−1] = yu−1 − u−1 y = u−1(uy − yu)u−1 = −u−1δ1uu−1.

Then

d

dt
log det u = 〈

u−1δμuu−1, δμu
〉

= τ
(
u−1(δμu)∗u−1δμu

)

= τ
(
u−1/2(δμu)∗u−1/2u−1/2δμuu−1/2)

= 〈
u−1/2(δμu)u−1/2, u−1/2δμuu−1/2〉

> 0.

That is to say, log det u is an increasing function in t . Hence det u > 0 for t > 0. So u(t) > 0 for t > 0. This completes the 
proof of the claim.

In conclusion, we have proven the following result.

Theorem 3.1. For any u0 ∈ Mn, the heat equation (3.1) has a global solution u(t) for t ≥ 0 with its limit ū0 as t → ∞. Furthermore, 
(1) if u0 > 0, then u(t) > 0, ∀t > 0; (2) if the initial data u(0) is Hermitian, then the solution u(t) is also Hermitian.

In below, we assume u0 > 0 and define the von Neumann entropy by

S(u) = −τ (u log u)

for the positive solution u = u(t) with u(0) = u0.
We have the following result.

Proposition 3.2. The entropy S(u) is increasing along the heat equation (3.1).

Proof. According to the proof of Theorem 4.1 in [8], we have:

d

dt
S(u) = −τ (ut log u) = τ (�u log u) = τ (u� log u).

Set l = log u. Then u = el .
By Proposition 2.2, we find

d

dt
S(u) = τ

(
el�l

) ≥ 0.

So S(u) is increasing along the heat equation (3.1). �
4. Entropy stability of the heat equation

Given two initial matrices u(0), v(0) in the unit ball of Mn . Let u, v be the corresponding solutions of the heat equation 
with the initial datum u(0) and v(0) respectively. Then the solutions u and v are also in the unit ball of Mn . Let w =
ū(0) − v̄(0). By Proposition 2.1, we obtain:

d

dt
|u − v − w|2 = −〈u − v − w,�u − �v〉 − 〈�u − �v, u − v − w〉

= −2
〈
δμ(u − v − w), δμ(u − v − w)

〉

≤ −2c|u − v − w|2.
Then

|u − v − w|2(t) ≤ A e−2ct → 0,

where A = |u − v − w|2(0).
Note that |w| ≤ |u(0) − v(0)|. By the triangle inequality and the result above, we know that

|u − v|(t) ≤ |u − v − w|(t) + |w| ≤ C |u − v|(0) (4.1)

for some uniform constant C ≥ 1. This is the Hilbert–Schmidt norm stability of Eq. (3.1).
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Remark. Recall here the definition of the trace norm T (a, b) [20] for a, b ∈ Mn . By the spectral decomposition theorem, we 
decompose a −b = Q − P , where Q and R are positive operators with orthogonal support. We define T (a, b) = tr(Q ) + tr(P ), 
which is independent of the choice of Q and R [20]. Clearly, we have T (a, b) ≤ √

n|a − b|. Note also that |a − b| ≤ T (a, b). 
Using the stability result (4.1), we have the trace norm stability of solutions u(t) and v(t), namely, there is a uniform 
constant C1 > 0 such that for any t > 0, it holds:

T (u, v)(t) ≤ C1T (u, v)(0). (4.2)

We now recall the Fannes inequality [9] (see Theorem 11.6 in [20]). The Fannes inequality states that for any a, b ∈ Mn

with a > 0, b > 0 and T (a, b) ≤ 1
e , we have

∣∣S(a) − S(b)
∣∣ ≤ T (a,b) log n + η

(
T (a,b)

)
, (4.3)

where η(s) = −s log s, n is the dimension of Mn . Then we can use the Fannes inequality to get the entropy stability of the 
solution of (3.1).

Theorem 4.1. Let u(0) and v(0) be as above. If T (u(0), v(0)) ≤ 1
C1e , u(0) > 0, v(0) > 0 in Mn, then the solutions u(t), v(t) (with 

initial datum u(0), v(0) respectively) satisfy
∣∣S

(
u(t)

) − S
(

v(t)
)∣∣ ≤ C1T (u, v)(0) log n + η

(
C1

(
T (u, v)

)
(0)

)
,

where C1 is the uniform constant in (4.2).

Proof. By the Fannes inequality (4.3) and the trace norm stability inequality (4.2), we have
∣∣S

(
u(t)

) − S
(

v(t)
)∣∣ ≤ T

(
u(t), v(t)

)
logn + η

(
T
(
u(t), v(t)

))

≤ C1T
(
u(0), v(0)

)
log n + η

(
C1T

(
u(0), v(0)

))
,

where we have used the monotonicity of the function η in [0, 1e ]. This completes the proof. �
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