Dans cette note, nous étudions la structure des faisceaux des NC-espaces
In this paper, we investigate the structure sheaves of an (infinite-dimensional) affine NC-space
Accepté le :
Publié le :
@article{CRMATH_2015__353_2_149_0, author = {Dosi, Anar}, title = {Noncommutative affine spaces and {Lie-complete} rings}, journal = {Comptes Rendus. Math\'ematique}, pages = {149--153}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.10.020}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2014.10.020/} }
TY - JOUR AU - Dosi, Anar TI - Noncommutative affine spaces and Lie-complete rings JO - Comptes Rendus. Mathématique PY - 2015 SP - 149 EP - 153 VL - 353 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2014.10.020/ DO - 10.1016/j.crma.2014.10.020 LA - en ID - CRMATH_2015__353_2_149_0 ER -
Dosi, Anar. Noncommutative affine spaces and Lie-complete rings. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 149-153. doi : 10.1016/j.crma.2014.10.020. https://www.numdam.org/articles/10.1016/j.crma.2014.10.020/
[1] Noncommutative holomorphic functions in elements of a Lie algebra and noncommutative localizations, Izv. Math. RAN, Volume 73 (2009) no. 06, pp. 77-100
[2] Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations, Algebra Colloq., Volume 17 (2010) no. Spec. 1, pp. 749-788
[3] Taylor functional calculus for supernilpotent Lie algebra of operators, J. Oper. Theory, Volume 63 (2010) no. 1, pp. 101-126
[4] Taylor spectrum and transversality for a Heisenberg algebra of operators, Mat. Sb., Volume 201 (2010) no. 3, pp. 39-62
[5] Algebras of power series of elements of a Lie algebra and the Slodkowski spectra, J. Math. Sci., Volume 124 (2004) no. 2, pp. 4886-4908 (translated from Zapiski Nauchnykh Seminarov POMI)
[6] Cartan–Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems, J. Funct. Anal., Volume 230 (2006) no. 2, pp. 446-493
[7] Local left invertibility for operator tuples and noncommutative localizations, J. K-Theory, Volume 4 (2009) no. 1, pp. 163-191
[8] On universal Lie nilpotent associative algebras, J. Algebra, Volume 321 (2009) no. 2, pp. 697-703
[9] On
[10] Éléments de géométrie algébrique, I. Le langage des schémas, Publ. Math. Inst. Hautes Études Sci., Volume 4 (1960), pp. 5-228
[11] (Graduate Texts in Mathematics), Volume vol. 52, Springer Verlag (1977), p. 496
[12] Noncommutative geometry based on commutator expansions, J. Reine Angew. Math., Volume 505 (1998), pp. 73-118
[13] Noncommutative Algebraic Geometry and Representation of Quantum Groups, Kluwer Academic Publishers, 1995
[14] A simple nil ring exists, Commun. Algebra, Volume 30 (2002) no. 1, pp. 27-59
[15] Non-Commutative Algebraic Geometry, Lecture Notes in Mathematics, vol. 887, Springer-Verlag, Berlin, 1981
- Deformation quantization of projective schemes and differential operators, Banach Journal of Mathematical Analysis, Volume 18 (2024) no. 4 | DOI:10.1007/s43037-024-00387-1
- Noncommutative Localizations of Lie-Complete Rings, Communications in Algebra, Volume 44 (2016) no. 11, p. 4892 | DOI:10.1080/00927872.2015.1130135
Cité par 2 documents. Sources : Crossref