EI SEVIER

Contents lists available at ScienceDirect

# C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com



Functional analysis/Algebraic geometry

# Noncommutative affine spaces and Lie-complete rings



# Espaces affines non commutatifs et anneaux de Lie complets

## Anar Dosi

Middle East Technical University, Northern Cyprus Campus, Guzelyurt, KKTC, Mersin 10, Turkey

#### ARTICLE INFO

#### Article history: Received 11 April 2013 Accepted 23 October 2014 Available online 3 December 2014

Presented by the Editorial Board

#### ABSTRACT

In this paper, we investigate the structure sheaves of an (infinite-dimensional) affine NC-space  $\mathbb{A}_{\mathrm{nc}}^{\mathbf{x}}$ , affine Lie-space  $\mathbb{A}_{\mathrm{lich}}^{\mathbf{x}}$ , and their nilpotent perturbations  $\mathbb{A}_{\mathrm{nc},q}^{\mathbf{x}}$  and  $\mathbb{A}_{\mathrm{lich},q}^{\mathbf{x}}$ , respectively. We prove that the schemes  $\mathbb{A}_{\mathrm{nc}}^{\mathbf{x}}$  and  $\mathbb{A}_{\mathrm{lich}}^{\mathbf{x}}$  are identical if and only if  $\mathbf{x}$  is a finite set of variables, that is, when we deal with finite-dimensional noncommutative affine spaces. For each (Zariski) open subset  $U \subseteq X = \mathrm{Spec}(\mathbb{C}[\mathbf{x}])$ , we obtain the precise descriptions of the algebras  $\mathcal{O}_{\mathrm{nc}}(U)$ ,  $\mathcal{O}_{\mathrm{nc},q}(U)$ ,  $\mathcal{O}_{\mathrm{lich},q}(U)$  and  $\mathcal{O}_{\mathrm{lich},q}(U)$  of noncommutative regular functions on U associated with the schemes  $\mathbb{A}_{\mathrm{nc}}^{\mathbf{x}}$ ,  $\mathbb{A}_{\mathrm{nc},q}^{\mathbf{x}}$ ,  $\mathbb{A}_{\mathrm{nc},q}^{$ 

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

#### RÉSUMÉ

Dans cette note, nous étudions la structure des faisceaux des NC-espaces  $\mathbb{A}_{nc}^{\mathbf{x}}$  et des Lie espaces  $\mathbb{A}_{nc,q}^{\mathbf{x}}$  et des Lie espaces  $\mathbb{A}_{nc,q}^{\mathbf{x}}$  et fich, affines (de dimension infinie), et de leur perturbations nilpotentes  $\mathbb{A}_{nc,q}^{\mathbf{x}}$  et  $\mathbb{A}_{nc,q}^{\mathbf{x}}$  et  $\mathbb{A}_{nc,q}^{\mathbf{x}}$  et  $\mathbb{A}_{nc,q}^{\mathbf{x}}$  et  $\mathbb{A}_{nc,q}^{\mathbf{x}}$  et  $\mathbb{A}_{nc}^{\mathbf{x}}$  sont identiques si et seulement si x est un ensemble fini de variables, c'est-à-dire lorsqu'on traite des espaces affines non commutatifs de dimension finie. Pour chaque ouvert (de Zariski)  $U \subset X = \operatorname{Spec}(\mathbb{C}[\mathbf{x}])$ , nous obtenons les descriptions précises des algèbres  $\mathcal{O}_{nc}(U)$ ,  $\mathcal{O}_{nc,q}(U)$ ,  $\mathcal{O}_{fich}(U)$  et  $\mathcal{O}_{fich,q}(U)$ , de fonctions régulières non commutatives sur U, associées aux schémas  $\mathbb{A}_{nc}^{\mathbf{x}}$ ,  $\mathbb{A}_{nc,q}^{\mathbf{x}}$ ,  $\mathbb{A}_{nc,q}^{\mathbf{x}}$ , et  $\mathbb{A}_{ich,q}^{\mathbf{x}}$ , respectivement. Ces résultats pour  $\mathcal{O}_{nc}(U)$  généralisent la formule de Kapranov dans le cas où la dimension est finie. De plus, nous montrons que tout anneau Lie complet A est plongé dans  $\Gamma(X, \mathcal{O}_A)$  comme sousalgèbre dense pour la topologie  $I_1$ -adique associée à l'idéal bilatère  $I_1$  engendré par tous les commutateurs de A.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

#### 1. Introduction

The main idea of scheme-theoretic algebraic geometry is the duality correspondence between commutative rings and affine schemes [10,11]. Based on this duality, noncommutative affine schemes are defined as the dual of the category of associative rings [13,15]. The affine NC-schemes are defined as noncommutative nilpotent thickenings of commutative schemes due to Kapranov [12]. If A is a noncommutative associative algebra with its commutativization  $A_C = A/\mathcal{I}([A,A])$ , then the surjective homomorphism  $A \to A_C$  allows us to embed the geometric object  $X = \operatorname{Spec}(A_C)$  into an affine NC-scheme  $(X, \mathcal{O}_A)$ , which is a ringed space equipped with a noncommutative structure sheaf  $\mathcal{O}_A$  of NC-complete algebras. Recall that an associative (complex) algebra A can be equipped with an NC-topology defined by the commutator filtration  $(F^k(A))_k$ , where  $F^k(A) = \sum_m \sum_{i_1 + \dots + i_m = k} I_{i_1} \dots I_{i_m}$  and  $I_S = \mathcal{I}(A_{\mathrm{lic}}^{(S+1)})$  is the two-sided ideal in A generated by the (S+1)-th member of the lower central series  $A_{\mathrm{lic}}^{(S+1)}$  of the related Lie algebra  $A_{\mathrm{lic}}$ . The algebra A is called an NC-complete algebra A is reduced to  $\operatorname{Spf}(A_C)$ , and the structure sheaf  $\mathcal{O}_A$  is defined as the sheaf of continuous sections of the covering space over X defined by the noncommutative topological localizations of A [12]. In particular, the affine NC-space  $A_{\mathrm{nc}}^{\mathrm{x}}$  (over the complex field) is defined as the formal scheme  $\operatorname{Spf}(\mathcal{O}_{\mathrm{nc}}(\mathbf{x}))$  of the NC-completion  $\mathcal{O}_{\mathrm{nc}}(\mathbf{x})$  of the free associative algebra  $\mathbb{C}(\mathbf{x})$  in the independent variables  $\mathbf{x} = (x_i)_{i \in \mathcal{S}}$ , whose structure sheaf is denoted by  $\mathcal{O}_{\mathrm{nc}}$ .

The formal schemes can be constructed for Lie-complete rings either. Recall that a ring A is said to be a Lie-nilpotent ring if  $A_{lie}$  is a nilpotent Lie ring. A Lie-complete ring A is defined as a complete filtered ring associated with a filtration  $(J_{\alpha})_{\alpha}$  whose quotients  $A/J_{\alpha}$  are Lie-nilpotent rings. They admit topological localizations that are commutative modulo their topological nilradicals (see below Proposition 1.1). The free algebra  $\mathbb{C}\langle \mathbf{x}\rangle$  admits various completions that are Lie-complete algebras. First consider the free Lie-nilpotent algebra  $B_q(\mathbf{x}) = \mathbb{C}\langle \mathbf{x} \rangle / I_q$  of index q, which is the Hausdorff completion of  $\mathbb{C}\langle \mathbf{x}\rangle$  with respect to the filtered topology of the (singleton) filtration  $(I_q)$ . We have also its  $I_1$ -adic (or NC) completion  $\mathcal{O}_{\mathfrak{lieh},q}(\mathbf{x})$ , which is the Hausdorff completion of  $\mathbb{C}\langle \mathbf{x}\rangle$  defined by one of the equivalent filtrations  $(I_q + I_1^k)_k$  and  $(I_q + F_k)_k$ , where  $F_k = F_k(\mathbb{C}\langle \mathbf{x} \rangle)$ . Actually,  $\mathcal{O}_{\mathfrak{lieh},q}(\mathbf{x})$  is the NC-completion of  $B_q(\mathbf{x})_{\mathfrak{h}} = \mathbb{C}\langle \mathbf{x} \rangle / \overline{I_q}^{\mathfrak{nc}}$ , where  $\overline{I_q}^{\text{nc}} = \bigcap_m (I_q + F_m)$  is the NC-closure of  $I_q$  in  $\mathbb{C}\langle \mathbf{x} \rangle$ . The completion of  $\mathbb{C}\langle \mathbf{x} \rangle$  with respect to the filtration  $(\overline{I_k}^{\text{nc}})_k$  is denoted by  $\mathcal{O}_{\text{lie}}(\mathbf{x})$ , whereas  $\mathcal{O}_{\text{lie}}(\mathbf{x})$  denotes the completion of  $\mathbb{C}\langle \mathbf{x} \rangle$  associated with  $(I_k)_k$ . Since  $\mathbb{C}\langle \mathbf{x} \rangle = \mathcal{U}(\mathfrak{L}(\mathbf{x}))$  is the universal enveloping algebra of the free Lie algebra  $\mathfrak{L}(\mathbf{x})$  generated by  $\mathbf{x}$ , we have the two-sided ideal  $\mathfrak{I}_q = \mathcal{I}(\mathfrak{L}(\mathbf{x})^{(q+1)}_{\mathrm{lie}})$  in  $\mathbb{C}\langle \mathbf{x} \rangle$ . The Hausdorff completion  $\mathcal{O}_{\mathfrak{nc},q}(\mathbf{x})$  of  $\mathbb{C}\langle\mathbf{x}\rangle$  is defined by one of the equivalent filtrations  $(\mathfrak{I}_q+I_1^k)_k$  and  $(\mathfrak{I}_q+F_k)_k$ . Note that it is just  $I_1$ -adic completion of  $\mathcal{U}(\mathfrak{g}_q(\mathbf{x}))$ , where  $\mathfrak{g}_q(\mathbf{x}) = \mathfrak{L}(\mathbf{x})/\mathfrak{L}(\mathbf{x})^{(q+1)}_{\text{lie}}$  is the free nilpotent Lie algebra of index q generated by  $\mathbf{x}$ . Thus we have the Lie-complete algebras  $\mathcal{O}_{\text{nc}}(\mathbf{x})$ ,  $\mathcal{O}_{\text{nc},q}(\mathbf{x})$ ,  $B_q(\mathbf{x})$ ,  $\mathcal{O}_{\text{lie}}(\mathbf{x})$ ,  $\mathcal{O}_{\text{lie}}(\mathbf{x})$ , and  $\mathcal{O}_{\text{lie}}(\mathbf{x})$ . Note that  $\mathcal{O}_{\text{nc}}(\mathbf{x}) = \lim_{\longleftarrow} \{\mathcal{O}_{\text{lie},q}(\mathbf{x})\} = \lim_{\longleftarrow} \{\mathcal{O}_{\text{lie},q}(\mathbf{x})\}$ ,  $\mathcal{O}_{\text{lie}}(\mathbf{x}) = \lim_{\longleftarrow} \{B_q(\mathbf{x})\}$ , and  $\mathcal{O}_{\text{lie}}(\mathbf{x}) = \lim_{\longleftarrow} \{B_q(\mathbf{x})\}$  up to the topological isomorphisms. The structure sheaves defined by these Lie-complete algebras are denoted by  $\mathcal{O}_{\mathfrak{nc}}$ ,  $\mathcal{O}_{\mathfrak{nc},q}$ ,  $\mathcal{B}_q$ ,  $\mathcal{O}_{\mathfrak{lie}}$ ,  $\mathcal{O}_{\mathfrak{lie}\mathfrak{h},q}$  and  $\mathcal{O}_{\mathfrak{lie}\mathfrak{h}}$ , respectively, and they in turn generate the schemes  $\mathbb{A}_{\mathfrak{nc}}^{\mathbf{x}}$ ,  $\mathbb{A}_{\mathfrak{nc},q}^{\mathbf{x}}$ ,  $\mathbb{A}_{\mathfrak{lie},q}^{\mathbf{x}}$ ,  $\mathbb{A}_{\mathfrak{lie}\mathfrak{h},q}^{\mathbf{x}}$  and  $\mathbb{A}_{\mathfrak{lie}\mathfrak{h},q}^{\mathbf{x}}$ , called noncommutative affine spaces. Note that the (topological) commutativizations of these algebras are reduced to  $\mathbb{C}[\mathbf{x}]$  and their formal spectra are reduced to  $X = \operatorname{Spec}(\mathbb{C}[\mathbf{x}])$  equipped with the Zariski topology. The identity mapping over X generates the scheme morphisms  $\mathbb{A}_{\text{lie}}^{\mathbf{x}} \to \mathbb{A}_{\text{lie}\mathfrak{h}}^{\mathbf{x}} \to \mathbb{A}_{\mathfrak{nc}}^{\mathbf{x}}$ . In the finite-dimensional case, these morphisms are identical, that is,  $\mathbb{A}_{\text{lie}\mathfrak{h}}^{\mathbf{x}} = \mathbb{A}_{\mathfrak{nc}}^{\mathbf{x}}$ iff  $Card(\mathbf{x}) < \infty$ . But in the infinite-dimensional case, we have different structure sheaves  $\mathcal{O}_{nc}$  and  $\mathcal{O}_{fieh}$  over X. This is a new phenomenon that appeared in the infinite-dimensional case having the affine Lie-space apart form the affine NC-space. Similar situation takes place for their *q*-versions.

In the present note, we propose descriptions of the structure sheaves associated with these noncommutative affine spaces. Our approach to the matter is based on the formally-radical holomorphic functions  $\mathcal{F}_{\mathfrak{g}}(U)$  in elements of a nilpotent Lie algebra  $\mathfrak{g}$  developed in [2,3] (see also [1]). The Fréchet algebras of noncommutative holomorphic functions have been developed to implement Taylor's program on the noncommutative holomorphic functional calculus for operator families generating a nilpotent Lie algebra [3–7].

## 2. The structure sheaf of a Lie-complete ring

Let A be a filtered ring with its filtration  $\mathfrak{a} = (J_{\alpha})_{\alpha}$ ,  $S \subseteq A \setminus \{0\}$  a (topologically) closed and multiplicatively closed subset in A satisfying the following topological right (similarly, left) Ore conditions:

(TR1) for  $s \in S$  and  $a \in A$  there exist nets  $(t_t) \subseteq S$  and  $(b_t) \subseteq A$  such that  $\lim_t (sb_t - at_t) = 0$ ;

(TR2) if  $sa \in J_{\alpha}$  with  $s \in S$  and  $a \in A$ , then  $at \in J_{\alpha}$  for some  $t \in S$ .

Then A admits the topological localization  $A[S^{-1}]$  of right (respectively, left) fractions, which is a complete filtered ring with its continuous ring homomorphism  $\varphi:A\to A[S^{-1}]$  such that  $\varphi(S)\subseteq A[S^{-1}]^*$  (consists of units) and  $\{\varphi(a)\varphi(s)^{-1}:a\in A,s\in S\}$  is dense in  $A[S^{-1}]$ . The filtered ring  $A[S^{-1}]$  possesses the following universal property. If  $\psi:A\to B$  is a continuous ring homomorphism into another complete filtered ring B such that  $\psi(S)\subseteq B^*$ , then there exists a unique continuous ring homomorphism  $\sigma:A[S^{-1}]\to B$  such that  $\sigma\cdot\varphi=\psi$ .

Now let A be a Lie-complete ring with its topological nilradical  $\mathfrak{Tnil}(A) = \{a \in A : \lim_n a^n = 0\}$ , and  $X = \operatorname{Spf}(A)$ . Then  $X = \operatorname{Spf}(A_c)$  is a topological space equipped with a Zariski topology, and  $\mathfrak{Tnil}(A) = \bigcap \{\mathfrak{p} : \mathfrak{p} \in \operatorname{Spf}(A)\}$ , where  $A_c = A/\overline{I_1}$ . If  $I_1$  is open (in particular,  $\mathfrak{Tnil}(A)$  is open), then  $X = \operatorname{Spec}(A_c)$ . Note that  $I_1$  is open for an NC-complete ring A.

**Proposition 1.1.** Every closed and multiplicatively closed subset  $S \subseteq A \setminus \{0\}$  of a Lie-complete ring A satisfies both topological left and right Ore conditions,  $\mathfrak{Tnil}(A[S^{-1}])$  is a closed two-sided ideal in  $A[S^{-1}]$ , and  $A[S^{-1}]$  is commutative modulo  $\mathfrak{Tnil}(A[S^{-1}])$ . If  $\mathfrak{Tnil}(A)$  is open then  $A[S^{-1}]^*$  is open for every topological localization of the ring A.

If S is the closure of  $\{s^n:n\in\mathbb{N}\}$  for a certain  $s\in A\setminus\mathfrak{Tmil}(A)$ , we use the notation  $A_{(s)}$  instead of  $A[S^{-1}]$ . For each  $e\in X$ , we form stalks  $A^e=\varinjlim\{A_{(x)}:x\notin e\}$ . The disjoint union  $\bigvee_{e\in X}A^e$  is made into a covering space of X in a standard way; define  $\mathcal{O}_A$  as the sheaf of continuous sections called the structure sheaf of the Lie-complete ring A. As in the commutative case,  $A_{(s)}$  is identified with a unital subring in  $\mathcal{O}_A(X_s)$ , where  $X_s=\{e\in X:s\notin e\}$ . A two-sided ideal I of A generates the closed two-sided ideal I(s) of  $A_{(s)}$ , which is the closure of the set  $\{a/s^n:a\in I,n\in\mathbb{Z}_+\}$ . The filtration  $\mathfrak{a}(s)=(J_\alpha(s))_\alpha$  defines the topology of  $A_{(s)}$ , whereas  $\mathfrak{i}_1(s)=(I_1(s)^m)_m$  is the  $I_1$ -adic topology of  $A_{(s)}$ . The weak  $I_1$ -adic topology of  $A_{(s)}$  is defined by the filtration  $\mathfrak{w}_1(s)=((J_\alpha+I_1^m)(s))_{(\alpha,m)}$ . Actually,  $\mathfrak{w}_1(s)=\inf\{\mathfrak{a}(s),\mathfrak{i}_1(s)\}$ . Further, we define I(U) as the set of those sections  $S\in\mathcal{O}_A(U)$  that are locally represented by elements of the ideal I(s), where  $U\subseteq X$  is an open subset. In particular, we have the filtrations  $\mathfrak{a}(U)=(J_\alpha(U))_\alpha$ ,  $\mathfrak{i}_1(U)=(I_1^m(U))_m$  and  $\mathfrak{w}_1(U)=((J_\alpha+I_1^m)(U))_{(\alpha,m)}$  of the ring  $\mathcal{O}_A(U)$ . The Hausdorff completions of  $A_{(s)}$  and  $\mathcal{O}_A(U)$  with respect to  $\mathfrak{w}_1(s)$  and  $\mathfrak{w}_1(U)$  are denoted by  $\widehat{A}_{(s)}$  and  $\widehat{\mathcal{O}}_A(U)$ , respectively, and  $\overline{A}_{(s)}$  denotes  $\mathfrak{w}_1(X_s)$ -closure of A in  $\mathcal{O}_A(X_s)$ .

**Theorem 1.2.** Let A be a Lie-complete ring with open  $\mathfrak{T}\mathfrak{nil}(A)$ . Then  $\mathfrak{w}_1(X_s)|A_{(s)}=\mathfrak{w}_1(s)$  and  $\overline{A_{(s)}}=\mathcal{O}_A(X_s)$ . Thus  $\widehat{A}_{(s)}=\widehat{\mathcal{O}}_A(X_s)$  up to a topological isomorphism. In particular,  $\Gamma(X,\mathcal{O}_A)=\overline{A}$ , and if the topology  $\mathfrak{a}$  of A is discreet (in this case A is a Lie-nilpotent ring) then  $\mathfrak{i}_1(X_s)|A_{(s)}=\mathfrak{i}_1(s)$ .

All Lie-completions of  $\mathbb{C}\langle \mathbf{x}\rangle$  introduced above have open topological nilradicals. Below we derive the equality  $\Gamma(X, \mathcal{O}_A) = A$  for most of them. In the general case, the  $I_1$ -adic topology of a Lie-nilpotent ring may not be Hausdorff. If  $I = \bigcap_m I_1^m$ , one may consider the related descending chain  $(I^m)_m$  again. By transfinite induction, it will lead to a stabilization, that is, there will be a nil ideal, which may not be nilpotent. Note that there is an example of a nil-ring that has no nilpotent ideals [14]. Thus A may not be embedded into  $\widehat{A}$ .

**Corollary 1.3.** If A is an NC-complete ring with its NC-topology  $\mathfrak{a}$ , then  $A_{(s)} = \mathcal{O}_A(X_s)$  and  $\mathfrak{a}(s) = \mathfrak{w}_1(s) = \mathfrak{w}_1(X_s) = \mathfrak{a}(X_s)$ . In particular,  $\Gamma(X, \mathcal{O}_A) = A$ .

## 3. The subalgebras $R_q(y)$ and $\Lambda_q(y)$

Consider a Hall basis  $\mathbf{y} = \bigvee_{i \in \mathbb{N}} \mathbf{y}_{(i)}$  for  $\mathfrak{L}(\mathbf{x})^{(2)}$ , where  $\mathbf{y}_{(i)}$  consists of commutators in  $\mathbf{x}$  of length i, and put  $\mathbf{y}_q = \bigvee_{i=1}^q \mathbf{y}_{(i)}$  for each q. Put  $\deg(y_u) = k$  for all  $y_u \in \mathbf{y}_{(k)}$ ,  $k \in \mathbb{N}$ , and  $\deg(y_{\gamma_1} \cdots y_{\gamma_k}) = \deg(y_{\gamma_1}) + \cdots + \deg(y_{\gamma_k})$  for a monomial in  $\mathbf{y}$ . If  $\alpha : \mathbf{y} \to \mathbb{Z}_+$  is a function with finite support, we use the notation  $\langle \alpha \rangle$  instead of  $\deg(\mathbf{y}^\alpha)$ . Note that  $\langle \alpha \rangle = \sum_{k \geq 1} k \sum_{y_u \in \mathbf{y}_{(k)}} \alpha(y_u)$  is a weighted sum of values of  $\alpha$ . Consider the subspace  $R\langle \mathbf{y} \rangle$  in  $\mathbb{C}\langle \mathbf{x} \rangle$  generated by all powers  $\mathbf{y}^\alpha$ , which is a unital subalgebra in  $\mathbb{C}\langle \mathbf{x} \rangle$  generated by  $\mathfrak{L}(\mathbf{x})^{(2)}$ . Actually, it admits gradation  $R\langle \mathbf{y} \rangle = \bigoplus_{n \geq 0} R^n \langle \mathbf{y} \rangle$ , where  $R^n \langle \mathbf{y} \rangle$  consists of all sums  $\sum_{(\alpha)=n} \lambda_\alpha \mathbf{y}^\alpha$ . The range of  $R\langle \mathbf{y} \rangle$  in  $U(\mathfrak{g}_q(\mathbf{x}))$  is denoted by  $R_q \langle \mathbf{y} \rangle$ . Thus  $R_q \langle \mathbf{y} \rangle = \bigoplus_{n \geq 0} R_q^n \langle \mathbf{y} \rangle$  consists of all sums  $\sum_{\sup (\mathbf{y}) \in \mathbf{y}_q} \lambda_\alpha \mathbf{y}^\alpha$ . The range of  $R\langle \mathbf{y} \rangle$  in  $B_q(\mathbf{x})$  is denoted by  $A_q \langle \mathbf{y} \rangle$ . Further, put  $J_m = \bigoplus_{n \geq m} \mathbb{C}[\mathbf{x}]_n \subseteq \mathbb{C}\langle \mathbf{x} \rangle$  with  $\mathbb{C}[\mathbf{x}]_n = \mathbb{C}[\mathbf{x}] \otimes R^n \langle \mathbf{y} \rangle$ . Its range in  $B_q(\mathbf{x})$  is denoted by  $J_{m,q}$ . Put  $[\alpha] = \max\{m : \mathbf{y}_q^\alpha \in J_{m,q}\}$ , which is the valuation of  $\mathbf{y}_q^\alpha$  in  $B_q(\mathbf{x})$  defined by the filtration  $(J_{m,q})_m$ . Thus  $[\alpha] \geq \langle \alpha \rangle$  for all  $\alpha$ , and  $[\alpha] = \langle \alpha \rangle$  whenever  $\langle \alpha \rangle < q$ , for  $I_q \subseteq J_q$ . The monomials  $\mathbf{y}_q^\alpha$  from  $\bigcap_m J_{m,q}$  have infinite valuations. Choose a linearly independent subset  $b_q^n$  of  $\{\mathbf{y}_q^\alpha\}$  in  $B_q(\mathbf{x})$  with valuations equal to  $n, 0 \leq n \leq \infty$ , which is a basis for  $J_{n,q}$  over  $J_{n+1,q}$  whenever  $n < \infty$ , and put  $\mathfrak{B}_q = b_q \cup b_q^\infty$ , which is a basis for  $J_{n,q}$  over  $J_{n+1,q}$  whenever  $J_{n,q}$  in  $J_q$  i

## 4. Affine NC-space $\mathbb{A}_{\mathfrak{n}\mathfrak{c},q}^{\mathbf{x}}$ of index q and affine NC-space $\mathbb{A}_{\mathfrak{n}\mathfrak{c}}^{\mathbf{x}}$

Now consider NC-complete algebras  $\mathcal{O}_{\mathfrak{nc},q}(\mathbf{x})$  and  $\mathcal{O}_{\mathfrak{nc}}(\mathbf{x})$ . The structure sheaf of the commutative algebra  $\mathbb{C}[\mathbf{x}]$  is denoted by  $\mathcal{O}$ . The sheaf  $\mathcal{O}$  in turn generates sheaves  $\widetilde{\mathcal{F}}_q$  and  $\widetilde{\mathcal{F}}$  of noncommutative algebras. As the sheaves of linear spaces they are defined in the following way:

$$\widetilde{\mathcal{F}}_q(U) = \prod_{n \in \mathbb{Z}_+} \mathcal{O}(U) \otimes R_q^n \langle \mathbf{y}_q \rangle \subseteq \mathcal{O}(U) \big[ [\mathbf{y}_q] \big] \quad \text{and} \quad \widetilde{\mathcal{F}}(U) = \prod_{n \in \mathbb{Z}_+} \mathcal{O}(U) \otimes R^n \langle \mathbf{y} \rangle \subseteq \mathcal{O}(U) \big[ [\mathbf{y}] \big]$$

for every quasicompact open subset  $U\subseteq X$ . Thus  $\widetilde{\mathcal{F}}(U)$  consists of all formal series  $f=\sum_{\alpha}f_{\alpha}\mathbf{y}^{\alpha}$  with finite sums  $\sum_{(\alpha)=n}f_{\alpha}\mathbf{y}^{\alpha}$  (for  $\mathrm{Card}(\mathbf{x})<\infty$ , the latter condition on f is satisfied automatically). Similarly,  $\widetilde{\mathcal{F}}_q(U)$  consists of all formal series  $f=\sum_{\mathrm{supp}(\alpha)\subseteq\mathbf{y}_q}f_{\alpha}\mathbf{y}^{\alpha}$  with finite sums  $\sum_{(\alpha)=n}f_{\alpha}\mathbf{y}^{\alpha}_q$ . The algebraic structures on  $\widetilde{\mathcal{F}}(U)$  and  $\widetilde{\mathcal{F}}_q(U)$  are associated with the ones of  $\mathbb{C}\langle\mathbf{x}\rangle$  and  $\mathcal{U}(\mathfrak{g}_q(\mathbf{x}))$ , respectively. If  $V\subseteq U$  are open subsets in X, then the restriction mapping  $\mathcal{O}(U)\to\mathcal{O}(V)$  generates the  $\widetilde{\mathcal{F}}_q$ -diagonal linear mapping  $\widetilde{\mathcal{F}}_q(U)\to\widetilde{\mathcal{F}}_q(V)$ ,  $f\mapsto f|_V=\sum_{\alpha}(f_{\alpha}|_V)\mathbf{y}^{\alpha}$ , which is a homomorphism.

**Theorem 3.1.** There are sheaf isomorphisms  $\mathcal{O}_{\mathfrak{nc},q} = \widetilde{\mathcal{F}}_q$ ,  $\mathcal{O}_{\mathfrak{nc}} = \widetilde{\mathcal{F}}$ , and  $\widetilde{\mathcal{F}} = \varprojlim \{\widetilde{\mathcal{F}}_q\}$ . In the case  $\mathsf{Card}(\mathbf{x}) < \infty$ , we obtain Kapranov's formula,  $\mathcal{O}_{\mathfrak{nc}}(U) = \widetilde{\mathcal{F}}(U) = \mathcal{O}(U)[[\mathbf{y}]]$ , for an open  $U \subseteq X$ .

The Fréchet algebra version of this result has been obtained in [2,3].

## 5. Affine Lie-space $\mathbb{A}^{\mathbf{x}}_{\mathfrak{lie},q}$ of index q and affine Lie-space $\mathbb{A}^{\mathbf{x}}_{\mathfrak{lie}\mathfrak{h},q}$

Consider the free Lie-nilpotent algebra  $B_q(\mathbf{x})$ , and Lie-complete algebra  $\mathcal{O}_{\mathfrak{lieh},q}(\mathbf{x})$ . The sheaf  $\mathcal{O}$  generates the sheaves  $\Omega_q$  and  $\widetilde{\Omega}_q$  of noncommutative algebras in the following way

$$\Omega_q(U) = \mathcal{O}(U) \otimes \Lambda_q \langle \mathbf{y} \rangle$$
 and  $\widetilde{\Omega}_q(U) = \prod_{n \in \mathbb{Z}_+} \mathcal{O}(U) \otimes \Lambda_q^n \langle \mathbf{y} \rangle$ 

for a quasicompact open  $U\subseteq X$ . Note that the algebra  $\Omega_q(U)$  consists of all finite sums  $f=\sum_{\alpha\in\mathfrak{B}_q}f_\alpha\mathbf{y}_q^\alpha$ , whereas  $\widetilde{\Omega}_q(U)$  consists of formal series  $\sum_{\alpha\in\mathfrak{b}_q}f_\alpha\mathbf{y}_q^\alpha$  with finite homogeneous parts  $\sum_{\lceil\alpha\rceil=n}f_\alpha\mathbf{y}_q^\alpha$ .

**Theorem 4.1.** There are sheaf isomorphisms  $\mathcal{O}_{\mathfrak{lie},q} = \Omega_q$ ,  $\mathcal{O}_{\mathfrak{lie}\mathfrak{h},q} = \widetilde{\Omega}_q$ , and  $\widetilde{\mathcal{F}} = \varinjlim\{\widetilde{\Omega}_q\}$ . In particular,  $\mathcal{O}_{\mathfrak{lie},2}(U) = \mathcal{O}(U) \otimes \Lambda_2 \langle \mathrm{d}\mathbf{x} \rangle$  is the algebra of all even differential forms over the algebra  $\mathcal{O}(U)$  equipped with the multiplication that is uniquely defined (locally) by Fedosov-type multiplication, and  $\mathcal{O}_{\mathfrak{lie}\mathfrak{h},2}(U) = \prod_{n>0} \mathcal{O}(U) \otimes \Lambda^{2n} \langle \mathrm{d}\mathbf{x} \rangle$  is the complete algebra of even forms.

Based on Theorem 4.1, we obtain that  $\mathbb{A}_{\mathfrak{nc}}^{\mathbf{x}} = \lim \{\mathbb{A}_{\mathfrak{lich},q}^{\mathbf{x}}\}$  as the schemes.

# **6.** Affine Lie-space $\mathbb{A}_{\text{lieh}}^{\mathbf{x}}$

Finally consider the Hausdorff-Lie completion  $\mathcal{O}_{\mathfrak{lieh}}$  of  $\mathbb{C}\langle\mathbf{x}\rangle$ . The quotient mapping  $\pi_q:R_q\langle\mathbf{y}\rangle\to \Lambda_q\langle\mathbf{y}\rangle$  generates the canonical homomorphism  $\widetilde{\pi}_q:\widetilde{\mathcal{F}}_q(U)\to\widetilde{\Omega}_q(U)$  over an open  $U\subseteq X$ . An element  $f\in\widetilde{\mathcal{F}}_q(U)$  is said to be a q-Lie-vanishing series if  $\widetilde{\pi}_q(f)\in\bigoplus_{n\in\mathbb{Z}_+}\mathcal{O}(U)\otimes\Lambda_q^n\langle\mathbf{y}\rangle$ . In the case of a finite  $\mathbf{x}$ , all elements from  $\widetilde{\mathcal{F}}_q(U)$  are q-Lie-vanishing series. In particular, each function  $f\in\widetilde{\mathcal{F}}_q(U)$  in a finite (noncommuting) variable (from  $\mathbf{x}$ ) is a q-Lie-vanishing one. Take a countable subset  $\{x_{i_k},x_{j_k}:k\in\mathbb{N}\}\subseteq\mathbf{x}$  and put  $y_k=[x_{i_k},x_{j_k}]\in\mathbf{y}_{(1)}$ . The series  $f=\sum_{n=1}^\infty y_1\cdots y_n\in\widetilde{\mathcal{F}}_2(U)$  is an example of non-2-Lie-vanishing series, whereas  $g=\sum_{n=1}^\infty y_1y_2^2\cdots y_n^2\in\widetilde{\mathcal{F}}_2(U)$  is an example of 2-Lie-vanishing series in infinite variables, for  $\widetilde{\pi}_2(g)=y_1$ . A formal series  $f=\sum_{\alpha}f_{\alpha}\mathbf{y}^{\alpha}$  in  $\widetilde{\mathcal{F}}(U)$  is said to be a Lie-convergent series if it is q-Lie-vanishing for every q. The subalgebra of all Lie-convergent series in  $\widetilde{\mathcal{F}}(U)$  is denoted by  $\widetilde{\mathcal{F}}_{\mathrm{fic}}(U)$ .

**Theorem 5.1.** There is a sheaf isomorphism  $\mathcal{O}_{\mathfrak{lieh}} = \widetilde{\mathcal{F}}_{\mathfrak{lie}}$ , and  $\mathcal{O}_{\mathfrak{lieh}}$  is a subsheaf in  $\mathcal{O}_{\mathfrak{nc}}$ .

We have also the formal scheme  $\mathbb{A}_{\mathrm{lie}}^{\mathbf{x}} = \varprojlim\{\mathbb{A}_{\mathrm{lie},q}^{\mathbf{x}}\}$  generated by  $\mathcal{O}_{\mathrm{lie}}(\mathbf{x})$ . By Theorem 4.1,  $\mathcal{O}_{\mathrm{lie}} = \varprojlim\{\Omega_q\}$ . Note that the identity mapping over X generates the scheme morphisms  $\mathbb{A}_{\mathrm{lie}}^{\mathbf{x}} \to \mathbb{A}_{\mathrm{lie}\mathfrak{h}}^{\mathbf{x}} \to \mathbb{A}_{\mathrm{nc}}^{\mathbf{x}}$  thanks to Theorem 5.1. Moreover,  $\mathbb{A}_{\mathrm{lie}\mathfrak{h}}^{\mathbf{x}} = \mathbb{A}_{\mathrm{nc}}^{\mathbf{x}}$  iff  $\mathrm{Card}(\mathbf{x}) < \infty$ . The equality  $\Gamma(X, \mathcal{O}_{\mathrm{lie}}) = \mathcal{O}_{\mathrm{lie}}(\mathbf{x})$  remains unclear, except for the rest of the sheaves. Based on Theorem 1.2, we have just the density of  $\mathcal{O}_{\mathrm{lie}}(\mathbf{x})$  in  $\Gamma(X, \mathcal{O}_{\mathrm{lie}})$  with respect to the topology of the filtration  $\mathfrak{w}_1(X)$ .

### Acknowledgements

I wish to thank Yu. V. Turovskii and X. Ma for useful discussions.

#### References

- [1] A.A. Dosi, Noncommutative holomorphic functions in elements of a Lie algebra and noncommutative localizations, Izv. Math. RAN 73 (06) (2009) 77–100.
- [2] A.A. Dosi, Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations, Algebra Colloq. 17 (Spec. 1) (2010) 749–788.

- [3] A.A. Dosi, Taylor functional calculus for supernilpotent Lie algebra of operators, J. Oper. Theory 63 (1) (2010) 101-126.
- [4] A.A. Dosi, Taylor spectrum and transversality for a Heisenberg algebra of operators, Mat. Sb. 201 (3) (2010) 39-62.
- [5] A.A. Dosiev, Algebras of power series of elements of a Lie algebra and the Slodkowski spectra, J. Math. Sci. 124 (2) (2004) 4886–4908 (translated from Zapiski Nauchnykh Seminarov POMI).
- [6] A.A. Dosiev, Cartan-Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems, J. Funct. Anal. 230 (2) (2006) 446-493.
- [7] A.A. Dosiev, Local left invertibility for operator tuples and noncommutative localizations, J. K-Theory 4 (1) (2009) 163-191.
- [8] P. Etingof, J. Kim, X. Ma, On universal Lie nilpotent associative algebras, J. Algebra 321 (2) (2009) 697–703.
- [9] B. Feigin, B. Shoiket, On [A, A]/[A, [A, A]] and a  $W_n$ -action on the consecutive commutators of free associative algebra, Math. Res. Lett. 14 (5–6) (2007) 781–795
- [10] A. Grothendieck, Éléments de géométrie algébrique, I. Le langage des schémas, Publ. Math. Inst. Hautes Études Sci. 4 (1960) 5-228.
- [11] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer Verlag, 1977, p. 496.
- [12] M. Kapranov, Noncommutative geometry based on commutator expansions, J. Reine Angew. Math. 505 (1998) 73-118.
- [13] A.L. Rosenberg, Noncommutative Algebraic Geometry and Representation of Quantum Groups, Kluwer Academic Publishers, 1995.
- [14] A. Smoktunowicz, A simple nil ring exists, Commun. Algebra 30 (1) (2002) 27–59.
- [15] F. Van Oystaeyen, A.H. Verschoren, Non-Commutative Algebraic Geometry, Lecture Notes in Mathematics, vol. 887, Springer-Verlag, Berlin, 1981.