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In this paper, we investigate the structure sheaves of an (infinite-dimensional) affine NC-
space Ax

nc, affine Lie-space Ax
lieh

, and their nilpotent perturbations Ax
nc,q and Ax

lieh,q , 
respectively. We prove that the schemes Ax

nc and Ax
lieh

are identical if and only if x
is a finite set of variables, that is, when we deal with finite-dimensional noncommuta-
tive affine spaces. For each (Zariski) open subset U ⊆ X = Spec(C[x]), we obtain the 
precise descriptions of the algebras Onc(U ), Onc,q(U ), Olieh,q(U ) and Olieh,q(U ) of 
noncommutative regular functions on U associated with the schemes Ax

nc, Ax
nc,q , Ax

lieh,q
and Ax

lieh
, respectively. The obtained result for Onc(U ) generalizes Kapranov’s formula in 

the finite-dimensional case. Our approach to the matter is based on a noncommutative 
holomorphic functional calculus in Fréchet algebras.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette note, nous étudions la structure des faisceaux des NC-espaces Ax
nc et des 

Lie espaces Ax
lieh

, affines (de dimension infinie), et de leur perturbations nilpotentes 
A

x
nc,q et Ax

lieh,q , respectivement. Nous montrons que les schémas Ax
nc et Ax

lieh
sont 

identiques si et seulement si x est un ensemble fini de variables, c’est-à-dire lorsqu’on 
traite des espaces affines non commutatifs de dimension finie. Pour chaque ouvert 
(de Zariski) U ⊂ X = Spec(C[x]), nous obtenons les descriptions précises des algèbres 
Onc(U ), Onc,q(U ), Olieh(U ) et Olieh,q(U ), de fonctions régulières non commutatives sur 
U , associées aux schémas Ax

nc, Ax
nc,q , Ax

lieh
et Ax

lieh,q , respectivement. Ces résultats pour 
Onc(U ) généralisent la formule de Kapranov dans le cas où la dimension est finie. De plus, 
nous montrons que tout anneau Lie complet A est plongé dans Γ (X, OA) comme sous-
algèbre dense pour la topologie I1-adique associée à l’idéal bilatère I1 engendré par tous 
les commutateurs de A.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The main idea of scheme-theoretic algebraic geometry is the duality correspondence between commutative rings and 
affine schemes [10,11]. Based on this duality, noncommutative affine schemes are defined as the dual of the category 
of associative rings [13,15]. The affine NC-schemes are defined as noncommutative nilpotent thickenings of commutative 
schemes due to Kapranov [12]. If A is a noncommutative associative algebra with its commutativization Ac = A/I([A, A]), 
then the surjective homomorphism A → Ac allows us to embed the geometric object X = Spec(Ac) into an affine NC-scheme 
(X, OA), which is a ringed space equipped with a noncommutative structure sheaf OA of NC-complete algebras. Recall that 
an associative (complex) algebra A can be equipped with an NC-topology defined by the commutator filtration (F k(A))k , 
where F k(A) = ∑

m

∑
i1+···+im=k Ii1 · · · Iim and Is = I(A(s+1)

lie
) is the two-sided ideal in A generated by the (s +1)-th member 

of the lower central series A(s+1)
lie

of the related Lie algebra Alie. The algebra A is called an NC-complete algebra if it is 
Hausdorff and complete with respect to the NC-topology in A. The formal spectrum X = Spf(A) of an NC-complete algebra 
A is reduced to Spf(Ac), and the structure sheaf OA is defined as the sheaf of continuous sections of the covering space 
over X defined by the noncommutative topological localizations of A [12]. In particular, the affine NC-space Ax

nc (over the 
complex field) is defined as the formal scheme Spf(Onc(x)) of the NC-completion Onc(x) of the free associative algebra 
C〈x〉 in the independent variables x =(xi)i∈Ξ , whose structure sheaf is denoted by Onc .

The formal schemes can be constructed for Lie-complete rings either. Recall that a ring A is said to be a Lie-nilpotent 
ring if Alie is a nilpotent Lie ring. A Lie-complete ring A is defined as a complete filtered ring associated with a fil-
tration ( Jα)α whose quotients A/ Jα are Lie-nilpotent rings. They admit topological localizations that are commutative 
modulo their topological nilradicals (see below Proposition 1.1). The free algebra C〈x〉 admits various completions that 
are Lie-complete algebras. First consider the free Lie-nilpotent algebra Bq(x) = C〈x〉/Iq of index q, which is the Haus-
dorff completion of C〈x〉 with respect to the filtered topology of the (singleton) filtration (Iq). We have also its I1-adic 
(or NC) completion Olieh,q(x), which is the Hausdorff completion of C〈x〉 defined by one of the equivalent filtrations 
(Iq + Ik

1)k and (Iq + Fk)k , where Fk = Fk(C〈x〉). Actually, Olieh,q(x) is the NC-completion of Bq(x)h = C〈x〉/Iq
nc, where 

Iq
nc = ⋂

m(Iq + Fm) is the NC-closure of Iq in C〈x〉. The completion of C〈x〉 with respect to the filtration (Ik
nc)k is denoted 

by Olieh(x), whereas Olie(x) denotes the completion of C〈x〉 associated with (Ik)k . Since C〈x〉 = U(L(x)) is the universal 
enveloping algebra of the free Lie algebra L(x) generated by x, we have the two-sided ideal Iq = I(L(x)

(q+1)

lie
) in C〈x〉. 

The Hausdorff completion Onc,q(x) of C〈x〉 is defined by one of the equivalent filtrations (Iq + Ik
1)k and (Iq + Fk)k . Note 

that it is just I1-adic completion of U(gq(x)), where gq(x) = L(x)/L(x)
(q+1)

lie
is the free nilpotent Lie algebra of index q

generated by x. Thus we have the Lie-complete algebras Onc(x), Onc,q(x), Bq(x), Olie(x), Olieh,q(x) and Olieh(x). Note 
that Onc(x) = lim←−{Onc,q(x)} = lim←−{Olieh,q(x)}, Olie(x) = lim←−{Bq(x)}, and Olieh(x) = lim←−{Bq(x)h} up to the topological iso-

morphisms. The structure sheaves defined by these Lie-complete algebras are denoted by Onc , Onc,q , Bq , Olie, Olieh,q and 
Olieh, respectively, and they in turn generate the schemes Ax

nc , Ax
nc,q , Ax

lie,q , Ax
lie

, Ax
lieh,q and Ax

lieh
, called noncommutative 

affine spaces. Note that the (topological) commutativizations of these algebras are reduced to C[x] and their formal spectra 
are reduced to X = Spec(C[x]) equipped with the Zariski topology. The identity mapping over X generates the scheme 
morphisms Ax

lie
→ A

x
lieh

→ A
x
nc. In the finite-dimensional case, these morphisms are identical, that is, Ax

lie
= A

x
lieh

= A
x
nc

iff Card(x) < ∞. But in the infinite-dimensional case, we have different structure sheaves Onc and Olieh over X . This is a 
new phenomenon that appeared in the infinite-dimensional case having the affine Lie-space apart form the affine NC-space. 
Similar situation takes place for their q-versions.

In the present note, we propose descriptions of the structure sheaves associated with these noncommutative affine 
spaces. Our approach to the matter is based on the formally-radical holomorphic functions Fg(U ) in elements of a nilpotent 
Lie algebra g developed in [2,3] (see also [1]). The Fréchet algebras of noncommutative holomorphic functions have been 
developed to implement Taylor’s program on the noncommutative holomorphic functional calculus for operator families 
generating a nilpotent Lie algebra [3–7].

2. The structure sheaf of a Lie-complete ring

Let A be a filtered ring with its filtration a =( Jα)α , S ⊆ A\{0} a (topologically) closed and multiplicatively closed subset 
in A satisfying the following topological right (similarly, left) Ore conditions:

(TR1) for s ∈ S and a ∈ A there exist nets (tι) ⊆ S and (bι) ⊆ A such that limι(sbι − atι) = 0;
(TR2) if sa ∈ Jα with s ∈ S and a ∈ A, then at ∈ Jα for some t ∈ S .
Then A admits the topological localization A[S−1] of right (respectively, left) fractions, which is a complete filtered ring 

with its continuous ring homomorphism ϕ : A → A[S−1] such that ϕ(S) ⊆ A[S−1]∗ (consists of units) and {ϕ(a)ϕ(s)−1 : a ∈
A, s ∈ S} is dense in A[S−1]. The filtered ring A[S−1] possesses the following universal property. If ψ : A → B is a continuous 
ring homomorphism into another complete filtered ring B such that ψ(S) ⊆ B∗ , then there exists a unique continuous ring 
homomorphism σ : A[S−1] → B such that σ · ϕ = ψ .

Now let A be a Lie-complete ring with its topological nilradical Tnil(A) = {a ∈ A : limn an = 0}, and X = Spf(A). Then 
X = Spf(Ac) is a topological space equipped with a Zariski topology, and Tnil(A) = ⋂{p : p ∈Spf(A)}, where Ac = A/I1. If I1
is open (in particular, Tnil(A) is open), then X = Spec(Ac). Note that I1 is open for an NC-complete ring A.
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Proposition 1.1. Every closed and multiplicatively closed subset S ⊆ A\{0} of a Lie-complete ring A satisfies both topological left and 
right Ore conditions, Tnil(A[S−1]) is a closed two-sided ideal in A[S−1], and A[S−1] is commutative modulo Tnil(A[S−1]). If Tnil(A)

is open then A[S−1]∗ is open for every topological localization of the ring A.

If S is the closure of {sn : n ∈ N} for a certain s ∈ A\Tnil(A), we use the notation A(s) instead of A[S−1]. For each e ∈ X , 
we form stalks Ae = lim−→{A(x) : x /∈ e}. The disjoint union 

∨
e∈X Ae is made into a covering space of X in a standard way; 

define OA as the sheaf of continuous sections called the structure sheaf of the Lie-complete ring A. As in the commutative case, 
A(s) is identified with a unital subring in OA(Xs), where Xs = {e ∈ X : s /∈ e}. A two-sided ideal I of A generates the closed 
two-sided ideal I(s) of A(s) , which is the closure of the set {a/sn : a ∈ I, n ∈ Z+}. The filtration a(s) = ( Jα(s))α defines the 
topology of A(s) , whereas i1(s) = (I1(s)m)m is the I1-adic topology of A(s) . The weak I1-adic topology of A(s) is defined by the 
filtration w1(s) = (( Jα + Im

1 )(s))(α,m) . Actually, w1(s) = inf{a(s), i1(s)}. Further, we define I(U ) as the set of those sections 
S ∈ OA(U ) that are locally represented by elements of the ideal I(s), where U ⊆ X is an open subset. In particular, we 
have the filtrations a(U ) = ( Jα(U ))α , i1(U ) = (Im

1 (U ))m and w1(U ) = (( Jα + Im
1 )(U ))(α,m) of the ring OA(U ). The Hausdorff 

completions of A(s) and OA(U ) with respect to w1(s) and w1(U ) are denoted by Â(s) and ÔA(U ), respectively, and A(s)
denotes w1(Xs)-closure of A in OA(Xs).

Theorem 1.2. Let A be a Lie-complete ring with open Tnil(A). Then w1(Xs)|A(s) = w1(s) and A(s) = OA(Xs). Thus ̂A(s) = ÔA(Xs)

up to a topological isomorphism. In particular, Γ (X, OA) = A, and if the topology a of A is discreet (in this case A is a Lie-nilpotent 
ring) then i1(Xs)|A(s) = i1(s).

All Lie-completions of C〈x〉 introduced above have open topological nilradicals. Below we derive the equality Γ (X, OA) =
A for most of them. In the general case, the I1-adic topology of a Lie-nilpotent ring may not be Hausdorff. If I = ⋂

m Im
1 , 

one may consider the related descending chain (Im)m again. By transfinite induction, it will lead to a stabilization, that is, 
there will be a nil ideal, which may not be nilpotent. Note that there is an example of a nil-ring that has no nilpotent ideals 
[14]. Thus A may not be embedded into Â .

Corollary 1.3. If A is an NC-complete ring with its NC-topology a, then A(s) = OA(Xs) and a(s) = w1(s) = w1(Xs) = a(Xs). In 
particular, Γ (X, OA) = A.

3. The subalgebras Rq〈y〉 and Λq〈y〉

Consider a Hall basis y =∨
i∈N y(i) for L(x)(2) , where y(i) consists of commutators in x of length i, and put yq = ∨q

i=1 y(i)
for each q. Put deg(yu) = k for all yu ∈ y(k) , k ∈N, and deg(yγ1 · · · yγk ) = deg(yγ1 ) +· · ·+deg(yγk ) for a monomial in y. If α :
y →Z+ is a function with finite support, we use the notation 〈α〉 instead of deg(yα). Note that 〈α〉 = ∑

k≥1 k 
∑

yu∈y(k)
α(yu)

is a weighted sum of values of α. Consider the subspace R〈y〉 in C〈x〉 generated by all powers yα , which is a uni-
tal subalgebra in C〈x〉 generated by L(x)(2) . Actually, it admits gradation R〈y〉 = ⊕

n≥0 Rn〈y〉, where Rn〈y〉 consists of 
all sums 

∑
〈α〉=n λαyα . The range of R〈y〉 in U(gq(x)) is denoted by Rq〈y〉. Thus Rq〈y〉 = ⊕

n Rn
q〈y〉 consists of all sums ∑

supp(α)⊆yq
λαyα . The range of R〈y〉 (or Rq〈y〉) in Bq(x) is denoted by Λq〈y〉. Further, put Jm = ⊕

n≥m C[x]n ⊆ C〈x〉 with 
C[x]n = C[x] ⊗ Rn〈y〉. Its range in Bq(x) is denoted by Jm,q . Put [α] = max{m : yα

q ∈ Jm,q}, which is the valuation of yα
q in 

Bq(x) defined by the filtration ( Jm,q)m . Thus [α] ≥ 〈α〉 for all α, and [α] = 〈α〉 whenever 〈α〉 < q, for Iq ⊆ Jq . The mono-
mials yα

q from 
⋂

m Jm,q have infinite valuations. Choose a linearly independent subset bn
q of {yα

q } in Bq(x) with valuations 
equal to n, 0 ≤ n ≤ ∞, which is a basis for Jn,q over Jn+1,q whenever n < ∞, and put Bq = bq ∪ b∞

q , which is a basis for 
Λq〈y〉, where bq = ∨

0≤n<∞ bn
q . The subspace in Λq〈y〉 generated by bn

q is denoted by Λn
q〈y〉. Thus Λq〈yq〉 = ⊕

0≤n≤∞ Λn
q〈y〉, 

and Λn
q〈y〉 = Rn

q〈y〉, n < q up to the canonical identification. The property 〈α〉 = deg(yα
q ) = [α] for all nonzero yα

q in Bq(x) is 
equivalent to the fact that the ideal Iq is graded, in the sense that Iq = ⊕

n≥q(C[x]n ∩ Iq). In this case, the filtration ( Jm,q)m is 
Hausdorff and Iq

nc = Iq (see Section 1). The ideal Iq is homogeneous for all q, 1 ≤ q ≤ 3 as follows from the results of [8,9]. 
For q ≥ 4 the problem remains open, and along with description of free Lie-nilpotent algebras of index q ≥ 3, it is an inter-
esting algebraic problem. For q = 2 the algebra Λ2〈y〉 is reduced to the even differential forms Λ2〈dx〉 = ⊕

n≥0 Λ2n〈dx〉 due 
to the infinite-dimensional version of Feigin–Shoikhet construction [9]. In this case, y1 = (yij) with yij = [xi, x j] = 2 dxi ∧dx j

and y2
i j = 0 in B2(x).

4. Affine NC-space Ax
nc,q of index q and affine NC-space Ax

nc

Now consider NC-complete algebras Onc,q(x) and Onc(x). The structure sheaf of the commutative algebra C[x] is de-
noted by O. The sheaf O in turn generates sheaves F̃q and F̃ of noncommutative algebras. As the sheaves of linear spaces 
they are defined in the following way:

F̃q(U ) =
∏

O(U ) ⊗ Rn
q〈yq〉 ⊆ O(U )

[[yq]
]

and F̃(U ) =
∏

O(U ) ⊗ Rn〈y〉 ⊆ O(U )
[[y]]
n∈Z+ n∈Z+
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for every quasicompact open subset U ⊆ X . Thus F̃(U ) consists of all formal series f = ∑
α fαyα with finite sums ∑

〈α〉=n fαyα (for Card(x) < ∞, the latter condition on f is satisfied automatically). Similarly, F̃q(U ) consists of all formal 
series f = ∑

supp(α)⊆yq
fαyα with finite sums 

∑
〈α〉=n fαyα

q . The algebraic structures on F̃(U ) and F̃q(U ) are associated with 
the ones of C〈x〉 and U(gq(x)), respectively. If V ⊆ U are open subsets in X , then the restriction mapping O(U ) → O(V )

generates the F̃q-diagonal linear mapping F̃q(U ) → F̃q(V ), f �→ f |V = ∑
α( fα |V )yα , which is a homomorphism.

Theorem 3.1. There are sheaf isomorphisms Onc,q = F̃q, Onc = F̃ , and F̃ = lim←−{F̃q}. In the case Card(x) < ∞, we obtain Kapranov’s 

formula, Onc(U ) = F̃(U ) =O(U )[[y]], for an open U ⊆ X.

The Fréchet algebra version of this result has been obtained in [2,3].

5. Affine Lie-space Ax
lie,q of index q and affine Lie-space Ax

lieh,q

Consider the free Lie-nilpotent algebra Bq(x), and Lie-complete algebra Olieh,q(x). The sheaf O generates the sheaves Ωq

and Ω̃q of noncommutative algebras in the following way

Ωq(U ) = O(U ) ⊗ Λq〈y〉 and Ω̃q(U ) =
∏

n∈Z+
O(U ) ⊗ Λn

q〈y〉

for a quasicompact open U ⊆ X . Note that the algebra Ωq(U ) consists of all finite sums f = ∑
α∈Bq

fαyα
q , whereas Ω̃q(U )

consists of formal series 
∑

α∈bq
fαyα

q with finite homogeneous parts 
∑

[α]=n fαyα
q .

Theorem 4.1. There are sheaf isomorphisms Olie,q = Ωq, Olieh,q = Ω̃q, and F̃ = lim←−{Ω̃q}. In particular, Olie,2(U ) = O(U ) ⊗Λ2〈dx〉
is the algebra of all even differential forms over the algebra O(U ) equipped with the multiplication that is uniquely defined (locally) by 
Fedosov-type multiplication, and Olieh,2(U ) = ∏

n≥0 O(U ) ⊗ Λ2n〈dx〉 is the complete algebra of even forms.

Based on Theorem 4.1, we obtain that Ax
nc = lim←−{Ax

lieh,q} as the schemes.

6. Affine Lie-space Ax
lieh

Finally consider the Hausdorff–Lie completion Olieh of C〈x〉. The quotient mapping πq : Rq〈y〉 → Λq〈y〉 generates the 
canonical homomorphism π̃q : F̃q(U ) → Ω̃q(U ) over an open U ⊆ X . An element f ∈ F̃q(U ) is said to be a q-Lie-vanishing 
series if π̃q( f ) ∈ ⊕

n∈Z+ O(U ) ⊗ Λn
q〈y〉. In the case of a finite x, all elements from F̃q(U ) are q-Lie-vanishing series. In par-

ticular, each function f ∈ F̃q(U ) in a finite (noncommuting) variable (from x) is a q-Lie-vanishing one. Take a countable 
subset {xik , x jk : k ∈ N} ⊆ x and put yk = [xik , x jk ] ∈ y(1) . The series f = ∑∞

n=1 y1 · · · yn ∈ F̃2(U ) is an example of non-2-Lie-
vanishing series, whereas g = ∑∞

n=1 y1 y2
2 · · · y2

n ∈ F̃2(U ) is an example of 2-Lie-vanishing series in infinite variables, for 
π̃2(g) = y1. A formal series f = ∑

α fαyα in F̃(U ) is said to be a Lie-convergent series if it is q-Lie-vanishing for every q. 
The subalgebra of all Lie-convergent series in F̃(U ) is denoted by F̃lie(U ).

Theorem 5.1. There is a sheaf isomorphism Olieh = F̃lie, and Olieh is a subsheaf in Onc.

We have also the formal scheme Ax
lie

= lim←−{Ax
lie,q} generated by Olie(x). By Theorem 4.1, Olie = lim←−{Ωq}. Note that 

the identity mapping over X generates the scheme morphisms Ax
lie

→ A
x
lieh

→ A
x
nc thanks to Theorem 5.1. Moreover, 

A
x
lie

= A
x
lieh

= A
x
nc iff Card(x) < ∞. The equality Γ (X, Olie) = Olie(x) remains unclear, except for the rest of the sheaves. 

Based on Theorem 1.2, we have just the density of Olie(x) in Γ (X, Olie) with respect to the topology of the filtration 
w1(X).
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