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RESUME

Dans cette note, nous étudions la structure des faisceaux des NC-espaces A% et des
Lie espaces A’[‘M’, affines (de dimension infinie), et de leur perturbations nilpotentes
Afcq et Al .. respectivement. Nous montrons que les schémas A, et A}, sont
identiques si et seulement si x est un ensemble fini de variables, c’est-a-dire lorsqu’on
traite des espaces affines non commutatifs de dimension finie. Pour chaque ouvert
(de Zariski) U C X = Spec(C[x]), nous obtenons les descriptions précises des algébres
One(U), Onc,q(U), Oriey(U) et Oiep,q(U), de fonctions réguliéres non commutatives sur
U, associées aux schémas A%, A ;. Al et Al . respectivement. Ces résultats pour
Ohn(U) généralisent la formule de Kapranov dans le cas ol la dimension est finie. De plus,
nous montrons que tout anneau Lie complet A est plongé dans I'(X,O4) comme sous-
algebre dense pour la topologie I1-adique associée a I'idéal bilatére Iy engendré par tous
les commutateurs de A.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

E-mail addresses: dosiev@metu.edu.tr, dosiev@yahoo.com.
URL: http://math.ncc.metu.edu.tr/content/members-dosiev.php.

http://dx.doi.org/10.1016/j.crma.2014.10.020
1631-073X/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.


http://dx.doi.org/10.1016/j.crma.2014.10.020
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:dosiev@metu.edu.tr
mailto:dosiev@yahoo.com
http://math.ncc.metu.edu.tr/content/members-dosiev.php
http://dx.doi.org/10.1016/j.crma.2014.10.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2014.10.020&domain=pdf

150 A. Dosi / C.R. Acad. Sci. Paris, Ser. 1 353 (2015) 149-153

1. Introduction

The main idea of scheme-theoretic algebraic geometry is the duality correspondence between commutative rings and
affine schemes [10,11]. Based on this duality, noncommutative affine schemes are defined as the dual of the category
of associative rings [13,15]. The affine NC-schemes are defined as noncommutative nilpotent thickenings of commutative
schemes due to Kapranov [12]. If A is a noncommutative associative algebra with its commutativization A, = A/Z([A, A)),
then the surjective homomorphism A — A, allows us to embed the geometric object X = Spec(A.) into an affine NC-scheme
(X, Op), which is a ringed space equipped with a noncommutative structure sheaf Q4 of NC-complete algebras. Recall that
an associative (complex) algebra A can be equipped with an NC-topology defined by the commutator filtration (FX(A)),
where Fk(A) = >om Zi1+~~+im=k I, --- 1, and Is = I(A([fjl)) is the two-sided ideal in A generated by the (s+ 1)-th member
of the lower central series Aﬁj]) of the related Lie algebra Ay.. The algebra A is called an NC-complete algebra if it is
Hausdorff and complete with respect to the NC-topology in A. The formal spectrum X = Spf(A) of an NC-complete algebra
A is reduced to Spf(A¢), and the structure sheaf O, is defined as the sheaf of continuous sections of the covering space
over X defined by the noncommutative topological localizations of A [12]. In particular, the affine NC-space A%_ (over the
complex field) is defined as the formal scheme Spf(O,.(x)) of the NC-completion O, (Xx) of the free associative algebra
C(x) in the independent variables X =(x;)icz, whose structure sheaf is denoted by O,,..

The formal schemes can be constructed for Lie-complete rings either. Recall that a ring A is said to be a Lie-nilpotent
ring if Ay, is a nilpotent Lie ring. A Lie-complete ring A is defined as a complete filtered ring associated with a fil-
tration (Jo)q whose quotients A/ ], are Lie-nilpotent rings. They admit topological localizations that are commutative
modulo their topological nilradicals (see below Proposition 1.1). The free algebra C(x) admits various completions that
are Lie-complete algebras. First consider the free Lie-nilpotent algebra Bq(x) = C(x)/I; of index g, which is the Haus-
dorff completion of C(x) with respect to the filtered topology of the (singleton) filtration (I5). We have also its I1-adic
(or NC) completion Ojicp q(X), which is the Hausdorff completion of C(x) defined by one of the equivalent filtrations
g + 1’1‘),< and (Iq + Fi)k, where Fi = Fi(C(x)). Actually, Ojicp,q(X) is the NC-completion of Bg(X)y = (C(x)/l_q“‘, where
I_qnc =(\nUq + Fm) is the NC-closure of I; in C(x). The completion of C(x) with respect to the filtration (I"%)y, is denoted
by Oliep(X), whereas Oy (x) denotes the completion of C(x) associated with (I)k. Since C(x) =U/(£(X)) is the universal

enveloping algebra of the free Lie algebra £(x) generated by x, we have the two-sided ideal J =I(2(X)E?j])) in C(x).
The Hausdorff completion Oy q(x) of C(X) is defined by one of the equivalent filtrations (Jg + I’l‘);< and (Jq + Fy)r. Note

that it is just I1-adic completion of U/(gq(X)), where gq(X) = S(X)/S(x)([?:“” is the free nilpotent Lie algebra of index g
generated by X. Thus we have the Lie-complete algebras Oy (X), Oncq(X), Bg(X), Orie(X), Olicp,q(X) and Oyiep (X). Note

that Oy (X) = im{Opc,q(X)} = im{Orien,¢(X)}, Olie (X) = lim{Bq(X)}, and Oiep(X) = lim{B4(X)y} up to the topological iso-

morphisms. The structure sheaves defined by these Lie-complete algebras are denoted by Onc, Onc,q, Bg, Otie, Oliep,q and
Olicp, respectively, and they in turn generate the schemes Af., AR o AT, oo AT Ay o and AT, ., called noncommutative
affine spaces. Note that the (topological) commutativizations of these algebras are reduced to C[x] and their formal spectra
are reduced to X = Spec(C[x]) equipped with the Zariski topology. The identity mapping over X generates the scheme
morphisms A%, — Af , — Af.. In the finite-dimensional case, these morphisms are identical, that is, Af;, = Af;,, = A},
iff Card(x) < co. But in the infinite-dimensional case, we have different structure sheaves Oy and Oy over X. This is a
new phenomenon that appeared in the infinite-dimensional case having the affine Lie-space apart form the affine NC-space.
Similar situation takes place for their g-versions.

In the present note, we propose descriptions of the structure sheaves associated with these noncommutative affine
spaces. Our approach to the matter is based on the formally-radical holomorphic functions F4(U) in elements of a nilpotent
Lie algebra g developed in [2,3] (see also [1]). The Fréchet algebras of noncommutative holomorphic functions have been
developed to implement Taylor's program on the noncommutative holomorphic functional calculus for operator families
generating a nilpotent Lie algebra [3-7].

2. The structure sheaf of a Lie-complete ring

Let A be a filtered ring with its filtration a =(Jy)w, S € A\{0} a (topologically) closed and multiplicatively closed subset
in A satisfying the following topological right (similarly, left) Ore conditions:

(TR1) for s € S and a € A there exist nets (t,) € S and (b,) € A such that lim,(sb, — at,) =0;

(TR2) if sae Jo with s€ S and a € A, then at € J, for some t € S.

Then A admits the topological localization A[S~!] of right (respectively, left) fractions, which is a complete filtered ring
with its continuous ring homomorphism ¢ : A — A[S™!] such that ¢(S) € A[S™!]* (consists of units) and {@p(a)¢(s) ' :ae
A,s e S} is dense in A[S™!]. The filtered ring A[S~!] possesses the following universal property. If 4/ : A — B is a continuous
ring homomorphism into another complete filtered ring B such that v/ (S) € B*, then there exists a unique continuous ring
homomorphism o : A[S™!] — B such that o - ¢ = 1.

Now let A be a Lie-complete ring with its topological nilradical ¥nil(A) = {a € A : lim, a" = 0}, and X = Spf(A). Then
X =Spf(A,) is a topological space equipped with a Zariski topology, and Tnil(A) = (\{p : p € Spf(A)}, where A, = A/I1. If I
is open (in particular, Tnil(A) is open), then X = Spec(A.). Note that I; is open for an NC-complete ring A.
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Proposition 1.1. Every closed and multiplicatively closed subset S C A\{0} of a Lie-complete ring A satisfies both topological left and
right Ore conditions, Tnil(A[S~1]) is a closed two-sided ideal in A[S~1], and A[S~!] is commutative modulo Tnil(A[S~1]). If Tnil(A)
is open then A[S™11* is open for every topological localization of the ring A.

If S is the closure of {s" :n € N} for a certain s € A\Tnil(A), we use the notation A instead of A[S™1]. For each e € X,
we form stalks A® =lim{A) : x ¢ e}. The disjoint union \/,.x A® is made into a covering space of X in a standard way;

define O4 as the sheaf of continuous sections called the structure sheaf of the Lie-complete ring A. As in the commutative case,
A¢s) is identified with a unital subring in O4(X;), where X; ={e € X : s ¢ e}. A two-sided ideal I of A generates the closed
two-sided ideal I(s) of A(s), which is the closure of the set {a/s" :a € I,n € Z}. The filtration a(s) = (J¢(s))o defines the
topology of A(s), whereas i1(s) = (I1(s)™)m is the I-adic topology of A(. The weak I -adic topology of A¢s) is defined by the
filtration t1(s) = ((Ja + IT)(5))(,m)- Actually, 11 (s) = inf{a(s), i1(s)}. Further, we define I(U) as the set of those sections
S € Oa(U) that are locally represented by elements of the ideal I(s), where U C X is an open subset. In particular, we
have the filtrations a(U) = (Jo(U))e, 11(U) = (IT'(U))m and w1 (U) = ((Jo + IT)(U))(a,m) of the ring O4(U). The Hausdorff
completions of Ay and Oa(U) with respect to toq(s) and toq(U) are denoted by 7\(5) and (5A(U), respectively, and m
denotes 11 (X;s)-closure of A in O (X;s).

Theorem 1.2. Let A be a Lie-complete ring with open Tnil(A). Then t1(X;s)|As) = to1(s) and m = Oa(Xs). Thus 2(5) = @A (Xs)
up to a topological isomorphism. In particular, I'(X, Oa) = A, and if the topology a of A is discreet (in this case A is a Lie-nilpotent
ring) then i1 (Xs)|As) = i1(5).

All Lie-completions of C(x) introduced above have open topological nilradicals. Below we derive the equality I"(X, O4) =
A for most of them. In the general case, the I;-adic topology of a Lie-nilpotent ring may not be Hausdorff. If I =, IT'
one may consider the related descending chain (I™),, again. By transfinite induction, it will lead to a stabilization, that is,
there will be a nil ideal, which may not be nilpotent. Note that there is an example of a nil-ring that has no nilpotent ideals
[14]. Thus A may not be embedded into A.

Corollary 1.3. If A is an NC-complete ring with its NC-topology a, then Ay = Oa(Xs) and a(s) = w1(s) = w1(Xs) = a(Xs). In
particular, I'(X, O4) = A

3. The subalgebras Rq(y) and A4(y)

Consider a Hall basis y = \/;cy Vi) for £x)@, where y(; consists of commutators in x of length i, and put y; = \/?:1 Vi)
for each q. Put deg(yy) =k for all y, € yq), k €N, and deg(yy, - --yy,) =deg(yy,) +-- +deg(yyk) for a monomial iny. If « :
y—Z is a function with finite support, we use the notation («) instead of deg(y®). Note that (o) =) - kzyuey(k) o (Yu)
is a weighted sum of values of «. Consider the subspace R{y) in C(x) generated by all powers y*, which is a uni-
tal subalgebra in C(x) generated by £(x)®. Actually, it admits gradation R{y) = @D, R*(y), where R"(y) consists of
all sums Z<a>:n AoyY®. The range of R(y) in U(gq(x)) is denoted by Rq(y). Thus Rq(y)_: b, Rg(y) consists of all sums
Zsupp(a)qu AqY®. The range of R(y) (or Rq(y)) in Bg(X) is denoted by Ag(y). Further, put J, = @nzm C[x]n, € C(x) with
C[x]n = C[x] ® R™(y). Its range in Bq(x) is denoted by Jm 4. Put [@] = max{m :yg‘ € Jm,q}, which is the valuation of yfz" in
Bq(x) defined by the filtration (Jm,q)m. Thus [a] > (o) for all ¢, and [] = () whenever () < g, for Ig C J4. The mono-
mials yg‘ from (1), Jm,q have infinite valuations. Choose a linearly independent subset bg of {y‘;} in Bg(x) with valuations
equal to n, 0 <n < oo, which is a basis for J, 4 over Jny1,4 whenever n < oo, and put By =bg U bq which is a basis for
Aq(y), where bg =\/g, o bg. The subspace in Aq(y) generated by by is denoted by Ag(y). Thus Aq{yq) = EBo<n<oo AZY),
and Ag(y) = Rz{y), n <q up to the canonical identification. The property (&) = deg(yg) = [«] for all nonzero y"‘ in Bq(x) is

q
equivalent to the fact that the ideal I; is graded, in the sense that I = @nzq((C[x]n NIg). In this case, the ﬁltration (Jm,g)m 1s

Hausdorff and I_q“c = Iq (see Section 1). The ideal I; is homogeneous for all g, 1 <q <3 as follows from the results of [8,9].
For q > 4 the problem remains open, and along with description of free Lie-nilpotent algebras of index q > 3, it is an inter-
esting algebraic problem. For ¢ =2 the algebra A;(y) is reduced to the even differential forms A;{dx) = @n>0 A?"(dx) due
to the infinite-dimensional version of Feigin-Shoikhet construction [9]. In this case, y1 = (y;j) with y;j = [x;, Xj] = 2dx; Adx;
and yizj =0 in By(x).

4. Affine NC-space AX .~ of index q and affine NC-space AX

ne,q

Now consider NC-complete algebras Oy 4(X) and Om(x) The structure sheaf of the commutative algebra C[x] is de-
noted by O. The sheaf O in turn generates sheaves fq and F of noncommutative algebras. As the sheaves of linear spaces
they are defined in the following way:

FoU) =[] o) @ Rylyg) COW)[lygl] and F(U)= [] oW)® R ty) < OW)[lyl]

nezy nez,
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for every quasicompact open subset U C X. Thus f(U) consists of all formal series f = )", foy* with finite sums
Z((x):n foy* (for Card(x) < oo, the latter condition on f is satisfied automatically). Similarly, fq(U) consists of all formal
series f = Zsupp(a)cy foy* with finite sums Z (a)=n fay"‘ The algebraic structures on .7?(U) and J?q(U) are associated with
the ones of C( ) and U (gq (X)), respectlvely If V. C U are open subsets in X, then the restriction mapping O(U) — O(V)
generates the ]-'q diagonal linear mapping fq(U) — }'q(V) f fIV=3%,(falV)y* which is a homomorphism.

Theorem 3.1. There are sheaf isomorphisms Oy q = fq, One = Foand F = lim{fq}. In the case Card(x) < oo, we obtain Kapranov’s
formula, Oy (U) = f(U) = OU)I[y]], for an open U C X.

The Fréchet algebra version of this result has been obtained in [2,3].

5. Affine Lie-space A*  of index q and affine Lie-space A*

lie,q lieh,q

Consider the free Lie-nilpotent algebra Bq(x), and Lie-complete algebra Oicp q(X). The sheaf O generates the sheaves $24
and £24 of noncommutative algebras in the following way

2,U)=0U)® Agly) and 2q(U) =[] oW)® 4jy)

neZy

for a quasicompact open U C X. Note that the algebra £24(U) consists of all finite sums f = Zae%q fayg‘, whereas SZ,(U)
consists of formal series Zaebq fayg‘ with finite homogeneous parts } ., faya‘.

Theorem 4.1. There are sheaf isomorphisms Oyie g = 24, Olien,qg = §q, and F = lim{ﬁq}. In particular, Oy 2 (U) = O(U) ® Az (dx)
is the algebra of all even differential forms over the algebra O(U) equipped with the multiplication that is uniquely defined (locally) by

Fedosov-type multiplication, and Oy 2(U) = ]_[nZO OU) ® AZ(dx) is the complete algebra of even forms.

Based on Theorem 4.1, we obtain that AX. = llm{A } as the schemes.

lieh,q

6. Affine Lie-space Ah ¢h

Finally consider the Hausdorff-Lie completion Oy, of C(x). The quotient mapping 74 : Rq(y) — Aq(y) generates the
canonical homomorphism 74 :fq(U) — ﬁq(U) over an open U C X. An element f € ]?q(U) is said to be a g-Lie-vanishing
series if 7q(f) € @ne& o) ® Ag(y). In the case of a finite x, all elements from ]?q(U) are g-Lie-vanishing series. In par-
ticular, each function f € ]-'q(U) in a finite (noncommuting) variable (from X) is a g-Lie-vanishing one. Take a countable
subset {x;,,xj, : k € N} Cx and put y;, = [x,k,x],(] €Y. The series f=Y o2 Y1 Vn € }N"Z(U) is an example of non-2-Lie-
vanishing series, whereas g =3 2 1y1y2 yn S ]-'2(U) is an example of 2-Lie-vanishing series in infinite variables, for
72(g) = y1. A formal series f =3, fo¥* in _7-"(U) is said to be a Lie-convergent series if it is g-Lie-vanishing for every q.
The subalgebra of all Lie-convergent series in f(U) is denoted by fm(U).

Theorem 5.1. There is a sheaf isomorphism Oy = ]?[ie, and Ojey is a subsheaf in Oy..

We have also the formal scheme A}, = llm{AIw q} generated by Oy, (x). By Theorem 4.1, Oy, = Ligl{ﬂq}. Note that

the identity mapping over X generates the scheme morphisms A}, — A[wh — A¥_ thanks to Theorem 5.1. Moreover,
A’[‘w A’[‘wb = AX, iff Card(x) < oo. The equality I"(X, Oyic) = Oyi(X) remains unclear, except for the rest of the sheaves.

Based on Theorem 1.2, we have just the density of Oy (x) in I'(X, Oy.) with respect to the topology of the filtration
01(X).
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