Soit K un corps quadratique imaginaire. Soit Π (resp. ) une représentation cuspidale régulière algébrique de (resp. ), qui est, de plus, cohomologique et auto-duale. Si Π est une induction automorphe cyclique d'un caractère de Hecke χ sur un corps CM, on montre les relations entre les périodes automorphes de Π définies par Harris et celles de χ. Par conséquent, on affine une formule de Grobner et Harris pour les valeurs critiques de , L étant la fonction de Rankin–Selberg. Cela complète la démonstration d'une version automorphe de la conjecture de Deligne dans certains cas.
Let K be a quadratic imaginary field. Let Π (resp. ) be a regular algebraic cuspidal representation of (resp. ), which is moreover cohomological and conjugate self-dual. When Π is a cyclic automorphic induction of a Hecke character χ over a CM field, we show relations between automorphic periods of Π defined by Harris and those of χ. Consequently, we refine a formula given by Grobner and Harris for critical values of the Rankin–Selberg L-function . This completes the proof of an automorphic version of Deligne's conjecture in certain cases.
Accepté le :
Publié le :
@article{CRMATH_2015__353_2_95_0, author = {Lin, Jie}, title = {Period relations for automorphic induction and applications, {I}}, journal = {Comptes Rendus. Math\'ematique}, pages = {95--100}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.10.016}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.10.016/} }
TY - JOUR AU - Lin, Jie TI - Period relations for automorphic induction and applications, I JO - Comptes Rendus. Mathématique PY - 2015 SP - 95 EP - 100 VL - 353 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.10.016/ DO - 10.1016/j.crma.2014.10.016 LA - en ID - CRMATH_2015__353_2_95_0 ER -
Lin, Jie. Period relations for automorphic induction and applications, I. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 95-100. doi : 10.1016/j.crma.2014.10.016. http://www.numdam.org/articles/10.1016/j.crma.2014.10.016/
[1] An introduction to the trace formula (Arthur, J.; Ellwood, D.; Kottwitz, R., eds.), Harmonic analysis, the trace formula and Shimura varieties, Clay Mathematics Proceedings, American Mathematical Society, Clay Mathematics Institute, 2003 (264 p)
[2] Rerprésentations galoisiennes associées aux representations automorphes autoduales de Gl(n), Publ. Math. IHÉS, Volume 73 (1991), pp. 97-145
[3] Automorphy for some l-adic lifts of automorphic mod l Galois representations, Publ. Math. IHÉS, Volume 108 (2008), pp. 1-181
[4] Valeurs de fonctions L et périodes d'intégrales (Borel, A.; Casselman, W., eds.), Automorphic Forms, Representations and L-Functions, Proceedings of the Symposium in Pure Mathematics of the American Mathematical Society, vol. 33, American Mathematical Society, 1979
[5] Whittaker periods, motivic periods, and special values of tensor product of L-functions, 23 August 2013 | arXiv
[6] L-functions of unitary groups and factorization of periods of Hilbert modular forms, J. Amer. Math. Soc., Volume 6 (1993) no. 3, pp. 637-719
[7] L-functions and periods of polarized regular motives, J. Reine Angew. Math. (1997) no. 483, pp. 75-161
[8] The local Langland's conjecture for over a p-adic field, , Invent. Math. (1998) no. 134, pp. 177-210
[9] The central critical value of the triple product L-functions, Ann. Math. (2), Volume 133 (1991) no. 3, pp. 605-672
[10] Conditional base change for unitary groups, Asian J. Math., Volume 8 (2004) no. 4, pp. 653-684
[11] The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, 2001
[12] Unramified representations of unitary groups (Clozel, L.; Harris, M.; Labesse, J.-P.; Ngô, B.C., eds.), On the Stabilization of the Trace Formula, vol. 1, International Press, 2011
Cité par Sources :