On démontre que la constante de Nazarov–Sodin, qui, à un changement d'échelle près, donne le terme principal de l'ordre de croissance du nombre de composantes nodales d'un champ aléatoire gaussien, dépend effectivement du champ. On en déduit que le résultat reste vrai pour les « ondes aléatoires arithmétiques », c'est-à-dire pour les fonctions propres du laplacien aléatoire sur un tore.
We prove that the Nazarov–Sodin constant, which up to a natural scaling gives the leading order growth for the expected number of nodal components of a random Gaussian field, genuinely depends on the field. We then infer the same for “arithmetic random waves”, i.e. random toral Laplace eigenfunctions.
Accepté le :
Publié le :
@article{CRMATH_2015__353_2_101_0, author = {Kurlberg, P\"ar and Wigman, Igor}, title = {Non-universality of the {Nazarov{\textendash}Sodin} constant}, journal = {Comptes Rendus. Math\'ematique}, pages = {101--104}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.09.026}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2014.09.026/} }
TY - JOUR AU - Kurlberg, Pär AU - Wigman, Igor TI - Non-universality of the Nazarov–Sodin constant JO - Comptes Rendus. Mathématique PY - 2015 SP - 101 EP - 104 VL - 353 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2014.09.026/ DO - 10.1016/j.crma.2014.09.026 LA - en ID - CRMATH_2015__353_2_101_0 ER -
%0 Journal Article %A Kurlberg, Pär %A Wigman, Igor %T Non-universality of the Nazarov–Sodin constant %J Comptes Rendus. Mathématique %D 2015 %P 101-104 %V 353 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2014.09.026/ %R 10.1016/j.crma.2014.09.026 %G en %F CRMATH_2015__353_2_101_0
Kurlberg, Pär; Wigman, Igor. Non-universality of the Nazarov–Sodin constant. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 101-104. doi : 10.1016/j.crma.2014.09.026. http://www.numdam.org/articles/10.1016/j.crma.2014.09.026/
[1] Dirichlet eigenfunctions of the square membrane: Courant's property, and A. Stern's and A. Pleijel's analyses (Available online) | arXiv
[2] Regular and irregular semiclassical wavefunctions, J. Phys. A, Volume 10 (1977) no. 12, pp. 2083-2091
[3] Percolation model for nodal domains of chaotic wave functions, Phys. Rev. Lett., Volume 88 (2002), p. 114102
[4] The distribution of the lattice points on circles, J. Number Theory, Volume 43 (1993) no. 2, pp. 198-202
[5] Nodal length fluctuations for arithmetic random waves, Ann. Math. (2), Volume 177 (2013) no. 2, pp. 699-737
[6] P. Kurlberg, I. Wigman, On probability measures arising from lattice points on circles, in preparation.
[7] On the number of nodal domains of random spherical harmonics, Amer. J. Math., Volume 131 (2009) no. 5, pp. 1337-1357
[8] Topologies of nodal sets of random band limited functions (Available online) | arXiv
[9] Lectures on random nodal portraits, June 2012 http://www.math.tau.ac.il/~sodin/SPB-Lecture-Notes.pdf (Preprint. Lecture notes for a mini-course given at the St. Petersburg Summer School in Probability and Statistical Physics, Available online)
Cité par Sources :