Partial Differential Equations/Mathematical Physics
On a waveguide with an infinite number of small windows
[Sur un guide d'onde avec un nombre infini de petites fentes]
Comptes Rendus. Mathématique, Tome 349 (2011) no. 1-2, pp. 53-56.

On considère un guide d'onde modélisé par le Laplacien dans une bande horizontale, avec des conditions de Dirichlet sur le bord supérieur et des conditions du type Dirichlet et Neumann qui alternent périodiquement sur le bord inférieur. La période est considérée petite et on étudie le problème de l'homogénéisation : on démontre la convergence en norme de la résolvante vers la résolvante du Laplacien avec des conditions de Neumann sur tout le bord inférieur et on obtient des estimations du taux de convergence. Ensuite on donne les deux premiers termes du développement asymptotique des valeurs propres de l'opérateur perturbé, ainsi que le développement asymptotique complet du bas de son spectre.

We consider a waveguide modeled by the Laplacian in a straight planar strip with the Dirichlet condition on the upper boundary, while on the lower one we impose periodically alternating boundary conditions with a small period. We study the case when the homogenization leads us to the Neumann boundary condition on the lower boundary. We establish the uniform resolvent convergence and provide the estimates for the rate of convergence. We construct the two-terms asymptotics for the first band functions of the perturbed operator and also the complete two-parametric asymptotic expansion for the bottom of its spectrum.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.11.029
Borisov, Denis 1 ; Bunoiu, Renata 2 ; Cardone, Giuseppe 3

1 Bashkir State Pedagogical University, October Revolution St. 3a, 450000 Ufa, Russia
2 LMAM, UMR 7122, Université de Metz et CNRS Ile du Saulcy, 57045 Metz cedex 1, France
3 University of Sannio, Department of Engineering, Corso Garibaldi, 107, 82100 Benevento, Italy
@article{CRMATH_2011__349_1-2_53_0,
     author = {Borisov, Denis and Bunoiu, Renata and Cardone, Giuseppe},
     title = {On a waveguide with an infinite number of small windows},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {53--56},
     publisher = {Elsevier},
     volume = {349},
     number = {1-2},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.029},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.029/}
}
TY  - JOUR
AU  - Borisov, Denis
AU  - Bunoiu, Renata
AU  - Cardone, Giuseppe
TI  - On a waveguide with an infinite number of small windows
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 53
EP  - 56
VL  - 349
IS  - 1-2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.11.029/
DO  - 10.1016/j.crma.2010.11.029
LA  - en
ID  - CRMATH_2011__349_1-2_53_0
ER  - 
%0 Journal Article
%A Borisov, Denis
%A Bunoiu, Renata
%A Cardone, Giuseppe
%T On a waveguide with an infinite number of small windows
%J Comptes Rendus. Mathématique
%D 2011
%P 53-56
%V 349
%N 1-2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.11.029/
%R 10.1016/j.crma.2010.11.029
%G en
%F CRMATH_2011__349_1-2_53_0
Borisov, Denis; Bunoiu, Renata; Cardone, Giuseppe. On a waveguide with an infinite number of small windows. Comptes Rendus. Mathématique, Tome 349 (2011) no. 1-2, pp. 53-56. doi : 10.1016/j.crma.2010.11.029. http://www.numdam.org/articles/10.1016/j.crma.2010.11.029/

[1] Borisov, D.I. On a model boundary value problem for Laplacian with frequently alternating type of boundary condition, Asymp. Analysis, Volume 35 (2003), pp. 1-26

[2] Borisov, D. On the spectrum of two quantum layers coupled by a window, J. Phys. A, Volume 40 (2007), pp. 5045-5066

[3] Borisov, D.; Cardone, G. Homogenization of the planar waveguide with frequently alternating boundary conditions, J. Phys. A, Volume 42 (2009), p. 365205 (21 pp)

[4] Bulla, W.; Gesztesy, F.; Renger, W.; Simon, B. Weakly coupled bound states in quantum waveguides, Proc. Amer. Math. Soc., Volume 12 (1997), pp. 1487-1495

[5] Chechkin, G.A. Averaging of boundary value problems with singular perturbation of the boundary conditions, Russ. Acad. Sci. Sb. Math., Volume 79 (1994), pp. 191-220

[6] Exner, P.; Šeba, P.; Tater, M.; Vaněk, D. Bound states and scattering in quantum waveguides coupled laterally through a boundary window, J. Math. Phys., Volume 37 (1996), pp. 4867-4887

[7] Friedman, A.; Huang, Ch.; Yong, J. Effective permeability of the boundary of a domain, Comm. PDE, Volume 20 (1995), pp. 59-102

[8] Gadyl'shin, R.R. Boundary value problem for the Laplacian with rapidly oscillating boundary conditions, Dokl. Math., Volume 58 (1998), pp. 293-296

[9] Gadylshin, R.R. Asymptotics of the eigenvalues of a boundary value problem with rapidly oscillating boundary conditions, Diff. Eqs., Volume 35 (1999), pp. 540-551

[10] Suslina, T.A. Homogenization in Sobolev class H1(Rd) for periodic elliptic second order differential operators including first order terms, Algebra i Analiz, Volume 22 (2010), pp. 108-222 (in Russian)

[11] Zhikov, V.V. Some estimates from homogenization theory, Dokl. Math., Volume 73 (2006), pp. 96-99

Cité par Sources :