The aim of this paper is to study the controllability and stabilization for the Benjamin equation on a periodic domain
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.12.004
Mots-clés : Dispersive equations, Benjamin equation, Well-posedness, Controllability, Stabilization
@article{AIHPC_2021__38_5_1605_0, author = {Panthee, M. and Vielma Leal, F.}, title = {On the controllability and stabilization of the {Benjamin} equation on a periodic domain}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1605--1652}, publisher = {Elsevier}, volume = {38}, number = {5}, year = {2021}, doi = {10.1016/j.anihpc.2020.12.004}, mrnumber = {4300934}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2020.12.004/} }
TY - JOUR AU - Panthee, M. AU - Vielma Leal, F. TI - On the controllability and stabilization of the Benjamin equation on a periodic domain JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1605 EP - 1652 VL - 38 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2020.12.004/ DO - 10.1016/j.anihpc.2020.12.004 LA - en ID - AIHPC_2021__38_5_1605_0 ER -
%0 Journal Article %A Panthee, M. %A Vielma Leal, F. %T On the controllability and stabilization of the Benjamin equation on a periodic domain %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1605-1652 %V 38 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2020.12.004/ %R 10.1016/j.anihpc.2020.12.004 %G en %F AIHPC_2021__38_5_1605_0
Panthee, M.; Vielma Leal, F. On the controllability and stabilization of the Benjamin equation on a periodic domain. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1605-1652. doi : 10.1016/j.anihpc.2020.12.004. https://www.numdam.org/articles/10.1016/j.anihpc.2020.12.004/
[1] Solitary waves solutions of the Benjamin equation, SIAM J. Appl. Math., Volume 59 (1999) no. 6, pp. 2139-2161 | DOI | MR | Zbl
[2] Existence and stability of solitary wave solutions of the Benjamin equation, J. Differ. Equ., Volume 152 (1999) no. 1, pp. 136-159 | DOI | MR | Zbl
[3] Nonlinear Analysis on Manifolds Monge-Ampere Equations, Grundlehren Mathematischen Wissenschaften, vol. 252, Springer Verlag, New York Inc., Heidelberg Berlin, 1982 | MR | Zbl
[4] Interpolation Spaces an Introduction, A Series of Comprehensive Studies in Mathematics, Springer-Verlag, Berlin Heidelberg New York, 1976 | MR | Zbl
[5] A new kind of solitary waves, J. Fluid Mech., Volume 245 (1992), pp. 401-411 | DOI | MR | Zbl
[6] Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces, Duke Math. J., Volume 43 (1976) no. 1, pp. 87-99 | DOI | MR | Zbl
[7] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part II: the KdV-equation, Geom. Funct. Anal., Volume 3 (1993), pp. 209-262 | DOI | MR | Zbl
[8] Existence and asymptotic properties of solitary-wave solutions of Benjamin-type equations, Adv. Differ. Equ., Volume 3 (1998) no. 1, pp. 51-84 | MR | Zbl
[9] A sharp bilinear estimate for the Bourgain-type space with application to the Benjamin equation, Commun. Partial Differ. Equ., Volume 35 (2010) no. 10, pp. 1739-1762 | DOI | MR | Zbl
[10] Sharp well-posedness for the Benjamin equation, Nonlinear Anal., Volume 74 (2011) no. 17, pp. 6209-6230 | DOI | MR | Zbl
[11] Sharp global well-posedness for KdV and modified KdV on R and
[12] Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., Volume 211 (2004), pp. 173-218 | DOI | MR | Zbl
[13] Control and Nonlinearity, Amer. Math. Soc., Math. Surveys and Monographs, vol. 136, 2007 | MR | Zbl
[14] Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., Volume 6 (2004), pp. 367-398 | DOI | MR | Zbl
[15] Relation between continuous time-varying and discontinuous feedback stabilization, J. Math. Syst. Estim. Control, Volume 4 (1994), pp. 67-84 | MR | Zbl
[16] Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. Éc. Norm. Supér., Volume 36 (2003) no. 4, pp. 525-551 | DOI | Numdam | MR | Zbl
[17] Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Mat. Ž., Volume 254 (2006), pp. 729-749 | MR | Zbl
[18] Dispersive Partial Differential Equations Well-Posedness and Applications, Cambridge University Press, 2016
[19] Global well-posedness of KdV in
[20] A bilinear estimate with applications to the KdV equation, J. Am. Math. Soc., Volume 9 (1996) no. 2, pp. 573-603 | DOI | MR | Zbl
[21] Well-posedness for the Benjamin equations, J. Korean Math. Soc., Volume 38 (2001) no. 6, pp. 1205-1234 | MR | Zbl
[22] Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM Control Optim. Calc. Var., Volume 16 (2010) no. 2, pp. 356-379 | DOI | Numdam | MR | Zbl
[23] Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3, SIAM J. Math. Anal., Volume 42 (2010) no. 2, pp. 785-832 | DOI | MR | Zbl
[24] Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Commun. Partial Differ. Equ., Volume 35 (2010) no. 4, pp. 707-744 | DOI | MR | Zbl
[25] Control and stabilization of the Benjamin-Ono equation in
[26] On the controllability and stabilization of the linearized Benjamin-Ono equation, ESAIM Control Optim. Calc. Var., Volume 11 (2005) no. 2, pp. 204-218 | DOI | Numdam | MR | Zbl
[27] Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., Volume 30 (1988) no. 1, pp. 1-68 | DOI | MR | Zbl
[28]
[29] Control and stabilization of the Benjamin-Ono equation on a periodic domain, Trans. Am. Math. Soc., Volume 367 (2015) no. 7, pp. 4595-4626 | DOI | MR
[30] On generalized Benjamin type equations, Discrete Contin. Dyn. Syst., Volume 12 (2005) no. 1, pp. 161-174 | DOI | MR | Zbl
[31] Stabilization of the Korteweg-de Vries equation with localized damping, Q. Appl. Math., Volume 60 (2002) no. 1, pp. 111-129 | DOI | MR | Zbl
[32] On the controllability and stabilization of the linearized Benjamin equation on a periodic domain, Nonlinear Anal., Real World Appl., Volume 51 (2020) | DOI | MR
[33] Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., Volume 2 (1997), pp. 33-55 | DOI | Numdam | MR | Zbl
[34] Exact controllability and stabilization of the nonlinear Schrödinger equation on a bounded interval, SIAM J. Control Optim., Volume 48 (2009) no. 2, pp. 972-992 | DOI | MR | Zbl
[35] Global stabilization of the generalized Korteweg-de Vries equation, SIAM J. Control Optim., Volume 45 (2006) no. 3, pp. 927-956 | DOI | MR | Zbl
[36] Control and stabilization of the nonlinear Schrödinger equation on rectangles, Math. Models Methods Appl. Sci., Volume 20 (2010) no. 12, pp. 2293-2347 | DOI | MR | Zbl
[37] Controllability and stabilization theory for linear partial differential equations: recent progress and open questions, SIAM Rev., Volume 20 (1978) no. 4, pp. 639-739 | DOI | MR | Zbl
[38] Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control Optim., Volume 31 (1993) no. 3, pp. 659-676 | DOI | MR | Zbl
[39] Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Am. Math. Soc., Volume 348 (1996) no. 9, pp. 3643-3672 | DOI | MR | Zbl
[40] Local well-posedness for periodic Benjamin equation with small data, Bound. Value Probl., Volume 2015 (2015) | MR
[41] Multilinear weighted convolution of
[42] Nonlinear Dispersive Equations Local and Global Analysis, Conference Board of the Mathematical Sciences, 2005
[43] Interpolation non lineaire et regularite, J. Funct. Anal., Volume 9 (1972), pp. 469-489 | DOI | MR | Zbl
[44] Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Control Optim., Volume 37 (1999) no. 2, pp. 543-565 | DOI | MR | Zbl
Cité par Sources :
This work was partially supported by FAPESP , Brazil, with grants 2016/25864-6 and 2015/06131-5 and CNPq , Brazil with grants (308131/2017-7 and 402849/2016-7).