Steiner symmetrization for anisotropic quasilinear equations via partial discretization
Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 347-368.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper we obtain comparison results for the quasilinear equation Δp,xuuyy=f with homogeneous Dirichlet boundary conditions by Steiner rearrangement in variable x, thus solving a long open problem. In fact, we study a broader class of anisotropic problems. Our approach is based on a finite-differences discretization in y, and the proof of a comparison principle for the discrete version of the auxiliary problem AUUyy0sf, where AU=(nωn1/ns1/n)p(Uss)p1. We show that this operator is T-accretive in L. We extend our results for Δp,x to general operators of the form div(a(|xu|)xu) where a is non-decreasing and behaves like ||p2 at infinity.

DOI : 10.1016/j.anihpc.2020.07.005
Mots-clés : Steiner symmetrization, Anisotropic quasilinear equations, Partial discretization, T-accretive operators
Brock, F. 1 ; Díaz, J.I. 2, 3 ; Ferone, A. 4 ; Gómez-Castro, D. 2, 3 ; Mercaldo, A. 5

1 a Institute of Mathematics, University of Rostock, Germany
2 b Departamento de Análisis Matemático y Matemática Aplicada, Universidad Complutense de Madrid, Spain
3 c Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Spain
4 d Dipartimento di Matematica e Fisica, Università della Campania “Luigi Vanvitelli”, Italy
5 e Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli Federico II, Italy
@article{AIHPC_2021__38_2_347_0,
     author = {Brock, F. and D{\'\i}az, J.I. and Ferone, A. and G\'omez-Castro, D. and Mercaldo, A.},
     title = {Steiner symmetrization for anisotropic quasilinear equations via partial discretization},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {347--368},
     publisher = {Elsevier},
     volume = {38},
     number = {2},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.07.005},
     mrnumber = {4211989},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.005/}
}
TY  - JOUR
AU  - Brock, F.
AU  - Díaz, J.I.
AU  - Ferone, A.
AU  - Gómez-Castro, D.
AU  - Mercaldo, A.
TI  - Steiner symmetrization for anisotropic quasilinear equations via partial discretization
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 347
EP  - 368
VL  - 38
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.005/
DO  - 10.1016/j.anihpc.2020.07.005
LA  - en
ID  - AIHPC_2021__38_2_347_0
ER  - 
%0 Journal Article
%A Brock, F.
%A Díaz, J.I.
%A Ferone, A.
%A Gómez-Castro, D.
%A Mercaldo, A.
%T Steiner symmetrization for anisotropic quasilinear equations via partial discretization
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 347-368
%V 38
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.005/
%R 10.1016/j.anihpc.2020.07.005
%G en
%F AIHPC_2021__38_2_347_0
Brock, F.; Díaz, J.I.; Ferone, A.; Gómez-Castro, D.; Mercaldo, A. Steiner symmetrization for anisotropic quasilinear equations via partial discretization. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 347-368. doi : 10.1016/j.anihpc.2020.07.005. http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.005/

[1] Alvino, A.; Díaz, J.I.; Lions, P.-L.; Trombetti, G. Équations elliptiques et symètrisation de Steiner, C. R. Acad. Sci. Paris, Volume 314 (1992), pp. 1015-1020 | MR | Zbl

[2] Alvino, A.; Ferone, V.; Trombetti, G.; Lions, P.-L. Convex symmetrization and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 14 (1997) no. 2, pp. 275-293 | DOI | Numdam | MR | Zbl

[3] Alvino, A.; Trombetti, G. A class of degenerate nonlinear elliptic equations, Ric. Mat., Volume 29 (1980) no. 2, pp. 193-212 | MR | Zbl

[4] Alvino, A.; Trombetti, G.; Díaz, J.I.; Lions, P.L. Elliptic equations and Steiner symmetrization, Commun. Pure Appl. Math., Volume 49 (1996) no. 3, pp. 217-236 | DOI | MR | Zbl

[5] Alvino, A.; Trombetti, G.; Lions, P.L. Comparison results for elliptic and parabolic equations via Schwarz symmetrization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 7 (1990) no. 2, pp. 37-65 | DOI | Numdam | MR | Zbl

[6] Antontsev, S.N.; Díaz, J.I.; Shmarev, S. Energy Methods for Free Boundary Problems, Birkhäuser, Boston, 2002 | DOI | MR | Zbl

[7] Baernstein, A.; Taylor, B.A. Spherical rearrangements, subharmonic functions, and *-functions in n -space, Duke Math. J., Volume 43 (1976) no. 2, pp. 245-268 | DOI | MR | Zbl

[8] C. Bandle, B. Kawohl, Application de la symétrization de steiner aux problèmes de poisson, preprint, 1992.

[9] Barbu, V. Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics, Springer New York, New York, NY, 2010 | DOI | MR | Zbl

[10] Benilan, P.; Spiteri, P. Discretisation par schema implicite d'un probleme abstrait d2u/dt2Au sur [0,1], u(0)=u0,u(1)=u1 , Publ. Math. Besanson Anal. Nonlin., Volume 10 (1987), pp. 93-100 | Zbl

[11] Brezis, H. Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis, Elsevier, 1971, pp. 101-156 | DOI | MR | Zbl

[12] Brock, F. Continuous Steiner-symmetrization, Math. Nachr., Volume 172 (1995), pp. 25-48 | DOI | MR | Zbl

[13] Brock, F. Continuous rearrangement and symmetry of solutions of elliptic problems, Proc. Indian Acad. Sci. Math. Sci., Volume 110 (2000) no. 2, pp. 157-204 | DOI | MR | Zbl

[14] Brock, F.; Chiacchio, F.; Ferone, A.; Mercaldo, A. New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's, Adv. Math., Volume 336 (2018), pp. 316-334 | DOI | MR

[15] Burchard, A. Steiner symmetrization is continuous in W1,p , Geom. Funct. Anal., Volume 7 (1997) no. 5, pp. 823-860 | DOI | MR | Zbl

[16] Burchard, A.; Ferone, A. On the extremals of the Pólya-Szego inequality, Indiana Univ. Math. J., Volume 64 (2015) no. 5, pp. 1447-1463 | DOI | MR

[17] Chiacchio, F. Estimates for the first eigenfunction of linear eigenvalue problems via Steiner symmetrization, Publ. Mat., Volume 53 (2009) no. 1, pp. 47-71 | DOI | MR | Zbl

[18] Cianchi, A.; Maz'ya, V.G. Global boundedness of the gradient for a class of nonlinear elliptic systems, Arch. Ration. Mech. Anal., Volume 212 (2014) no. 1, pp. 129-177 | DOI | MR | Zbl

[19] Cianchi, A.; Maz'ya, V.G. Second-order two-sided estimates in nonlinear elliptic problems, Arch. Ration. Mech. Anal., Volume 229 (2018) no. 2, pp. 569-599 | DOI | MR

[20] Crandall, M.G.; Ishii, H.; Lions, P.-L. User's guide to viscosity solutions of second order partial differential equation, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl

[21] Dal Maso, G. An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations, Birkhäuser Boston, Boston, MA, 1993 | DOI | MR | Zbl

[22] Díaz, J.I. Simetrización de problemas parabólicos no lineales: aplicación a ecuaciones de reacción-difusión, Madrid (Memorias de la Real Academia de Ciencias Exactas, Físicas y Naturales), Volume vol. XXVIII (1991) | Zbl

[23] Díaz, J.I.; Gómez-Castro, D. On the effectiveness of wastewater cylindrical reactors: an analysis through Steiner symmetrization, Pure Appl. Geophys., Volume 173 (2016) no. 3

[24] Ekeland, I.; Temam, R. Convex Analysis and Variational Problems, Society for Industrial and Applied Mathematics, jan 1999 | DOI | MR | Zbl

[25] Evans, L.C. On solving certain nonlinear partial differential equations by accretive operator methods, Isr. J. Math., Volume 36 (1980) no. 3–4, pp. 225-247 | DOI | MR | Zbl

[26] Evans, L.C. Weak Convergence Methods for Nonlinear Partial Differential Equations. Number 74, American Mathematical Society, Providence, Rhode Island, 1988 | MR | Zbl

[27] Ferone, V.; Mercaldo, A. Neumann problems and Steiner symmetrization, Commun. Partial Differ. Equ., Volume 30 (2005) no. 10–12, pp. 1537-1553 | DOI | MR | Zbl

[28] Fonseca, I. The Wulff theorem revisited, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 432 (1991) no. 1884, pp. 125-145 | MR | Zbl

[29] Gehring, F.W. Symmetrization of rings in space, Trans. Am. Math. Soc., Volume 101 (1961) no. 3, p. 499 | DOI | MR | Zbl

[30] Ishii, H. On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions, Funkc. Ekvacioj, Volume 38 (1995), pp. 101-120 | MR | Zbl

[31] Juutinen, P.; Lindqvist, P.; Manfredi, J.J. On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., Volume 33 (2003) no. 3, pp. 699-717 | DOI | MR | Zbl

[32] Lions, P.L.; Souganidis, P.E. Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 5, pp. 667-677 | DOI | Numdam | MR | Zbl

[33] Maz'ja, V.G. Weak solutions of the Dirichlet and Neumann problems, Tr. Mosk. Mat. Obš., Volume 20 (1969), pp. 137-172 | Zbl

[34] Medina, M.; Ochoa, P. On viscosity and weak solutions for non-homogeneous p -Laplace equations, Adv. Nonlinear Anal., Volume 8 (2019) no. 1, pp. 468-481 | DOI | MR

[35] Meier, M. Boundedness and integrability properties of weak solutions of quasilinear elliptic systems, J. Reine Angew. Math., Volume 1982 (1982) no. 333, pp. 191-220 | DOI | MR | Zbl

[36] Minty, G.J. Monotone (nonlinear) operators in Hilbert space, Duke Math. J., Volume 29 (1962) no. 3, pp. 341-346 | DOI | MR | Zbl

[37] Newnham, R.E. Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, Oxford, 2005

[38] Poffald, E.I.; Reich, S. A quasi-autonomous second-order differential inclusion, Trends in Theory and Practice of Non-Linear Analysis, 1985, pp. 387-392 | MR | Zbl

[39] Reich, S.; Shafrir, I. An existence theorem for a difference inclusion in general Banach spaces, J. Math. Anal. Appl., Volume 160 (1991) no. 2, pp. 406-412 | DOI | MR | Zbl

[40] Talenti, G. Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 3 (1976) no. 4, pp. 697-718 | Numdam | MR | Zbl

[41] Talenti, G. Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Appl. Anal., Volume 6 (1977) no. 4, pp. 319-320 | DOI | Zbl

[42] Talenti, G. Linear elliptic p.d.e.'s: level sets, rearrangements and a priori estimates of solutions, Boll. Unione Mat. Ital., B (6), Volume 4 (1985) no. 3, pp. 917-949 | MR | Zbl

[43] Talenti, G. The art of rearranging, Milan J. Math., Volume 84 (2016) no. 1, pp. 105-157 | DOI | MR

[44] Van Schaftingen, J. Anisotropic symmetrization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 4, pp. 539-565 | DOI | Numdam | MR | Zbl

[45] Weinberger, H.F. Symmetrization in uniformly elliptic problems, Studies in Mathematical Analysis and Related Topics, Stanford Univ. Press, Stanford, Calif, 1962, pp. 424-428 | MR | Zbl

[46] Wulff, G. Zur Frage der Geschwindigkeit des Wachsturms und der Auflösung der Krystallflächen, Z. Kristallogr., Volume 34 (1901)

[47] Zhikov, V.V. On the homogenization technique for variational problems, Funct. Anal. Appl., Volume 33 (1999) no. 1, pp. 11-24 | DOI | Zbl

Cité par Sources :