In this paper we obtain comparison results for the quasilinear equation with homogeneous Dirichlet boundary conditions by Steiner rearrangement in variable x, thus solving a long open problem. In fact, we study a broader class of anisotropic problems. Our approach is based on a finite-differences discretization in y, and the proof of a comparison principle for the discrete version of the auxiliary problem , where . We show that this operator is T-accretive in . We extend our results for to general operators of the form where a is non-decreasing and behaves like at infinity.
@article{AIHPC_2021__38_2_347_0, author = {Brock, F. and D{\'\i}az, J.I. and Ferone, A. and G\'omez-Castro, D. and Mercaldo, A.}, title = {Steiner symmetrization for anisotropic quasilinear equations via partial discretization}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {347--368}, publisher = {Elsevier}, volume = {38}, number = {2}, year = {2021}, doi = {10.1016/j.anihpc.2020.07.005}, mrnumber = {4211989}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.005/} }
TY - JOUR AU - Brock, F. AU - Díaz, J.I. AU - Ferone, A. AU - Gómez-Castro, D. AU - Mercaldo, A. TI - Steiner symmetrization for anisotropic quasilinear equations via partial discretization JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 347 EP - 368 VL - 38 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.005/ DO - 10.1016/j.anihpc.2020.07.005 LA - en ID - AIHPC_2021__38_2_347_0 ER -
%0 Journal Article %A Brock, F. %A Díaz, J.I. %A Ferone, A. %A Gómez-Castro, D. %A Mercaldo, A. %T Steiner symmetrization for anisotropic quasilinear equations via partial discretization %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 347-368 %V 38 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.005/ %R 10.1016/j.anihpc.2020.07.005 %G en %F AIHPC_2021__38_2_347_0
Brock, F.; Díaz, J.I.; Ferone, A.; Gómez-Castro, D.; Mercaldo, A. Steiner symmetrization for anisotropic quasilinear equations via partial discretization. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 347-368. doi : 10.1016/j.anihpc.2020.07.005. http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.005/
[1] Équations elliptiques et symètrisation de Steiner, C. R. Acad. Sci. Paris, Volume 314 (1992), pp. 1015-1020 | MR | Zbl
[2] Convex symmetrization and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 14 (1997) no. 2, pp. 275-293 | DOI | Numdam | MR | Zbl
[3] A class of degenerate nonlinear elliptic equations, Ric. Mat., Volume 29 (1980) no. 2, pp. 193-212 | MR | Zbl
[4] Elliptic equations and Steiner symmetrization, Commun. Pure Appl. Math., Volume 49 (1996) no. 3, pp. 217-236 | DOI | MR | Zbl
[5] Comparison results for elliptic and parabolic equations via Schwarz symmetrization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 7 (1990) no. 2, pp. 37-65 | DOI | Numdam | MR | Zbl
[6] Energy Methods for Free Boundary Problems, Birkhäuser, Boston, 2002 | DOI | MR | Zbl
[7] Spherical rearrangements, subharmonic functions, and *-functions in -space, Duke Math. J., Volume 43 (1976) no. 2, pp. 245-268 | DOI | MR | Zbl
[8] C. Bandle, B. Kawohl, Application de la symétrization de steiner aux problèmes de poisson, preprint, 1992.
[9] Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics, Springer New York, New York, NY, 2010 | DOI | MR | Zbl
[10] Discretisation par schema implicite d'un probleme abstrait sur , , Publ. Math. Besanson Anal. Nonlin., Volume 10 (1987), pp. 93-100 | Zbl
[11] Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis, Elsevier, 1971, pp. 101-156 | DOI | MR | Zbl
[12] Continuous Steiner-symmetrization, Math. Nachr., Volume 172 (1995), pp. 25-48 | DOI | MR | Zbl
[13] Continuous rearrangement and symmetry of solutions of elliptic problems, Proc. Indian Acad. Sci. Math. Sci., Volume 110 (2000) no. 2, pp. 157-204 | DOI | MR | Zbl
[14] New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's, Adv. Math., Volume 336 (2018), pp. 316-334 | DOI | MR
[15] Steiner symmetrization is continuous in , Geom. Funct. Anal., Volume 7 (1997) no. 5, pp. 823-860 | DOI | MR | Zbl
[16] On the extremals of the Pólya-Szego inequality, Indiana Univ. Math. J., Volume 64 (2015) no. 5, pp. 1447-1463 | DOI | MR
[17] Estimates for the first eigenfunction of linear eigenvalue problems via Steiner symmetrization, Publ. Mat., Volume 53 (2009) no. 1, pp. 47-71 | DOI | MR | Zbl
[18] Global boundedness of the gradient for a class of nonlinear elliptic systems, Arch. Ration. Mech. Anal., Volume 212 (2014) no. 1, pp. 129-177 | DOI | MR | Zbl
[19] Second-order two-sided estimates in nonlinear elliptic problems, Arch. Ration. Mech. Anal., Volume 229 (2018) no. 2, pp. 569-599 | DOI | MR
[20] User's guide to viscosity solutions of second order partial differential equation, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl
[21] An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations, Birkhäuser Boston, Boston, MA, 1993 | DOI | MR | Zbl
[22] Simetrización de problemas parabólicos no lineales: aplicación a ecuaciones de reacción-difusión, Madrid (Memorias de la Real Academia de Ciencias Exactas, Físicas y Naturales), Volume vol. XXVIII (1991) | Zbl
[23] On the effectiveness of wastewater cylindrical reactors: an analysis through Steiner symmetrization, Pure Appl. Geophys., Volume 173 (2016) no. 3
[24] Convex Analysis and Variational Problems, Society for Industrial and Applied Mathematics, jan 1999 | DOI | MR | Zbl
[25] On solving certain nonlinear partial differential equations by accretive operator methods, Isr. J. Math., Volume 36 (1980) no. 3–4, pp. 225-247 | DOI | MR | Zbl
[26] Weak Convergence Methods for Nonlinear Partial Differential Equations. Number 74, American Mathematical Society, Providence, Rhode Island, 1988 | MR | Zbl
[27] Neumann problems and Steiner symmetrization, Commun. Partial Differ. Equ., Volume 30 (2005) no. 10–12, pp. 1537-1553 | DOI | MR | Zbl
[28] The Wulff theorem revisited, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 432 (1991) no. 1884, pp. 125-145 | MR | Zbl
[29] Symmetrization of rings in space, Trans. Am. Math. Soc., Volume 101 (1961) no. 3, p. 499 | DOI | MR | Zbl
[30] On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions, Funkc. Ekvacioj, Volume 38 (1995), pp. 101-120 | MR | Zbl
[31] On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., Volume 33 (2003) no. 3, pp. 699-717 | DOI | MR | Zbl
[32] Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 5, pp. 667-677 | DOI | Numdam | MR | Zbl
[33] Weak solutions of the Dirichlet and Neumann problems, Tr. Mosk. Mat. Obš., Volume 20 (1969), pp. 137-172 | Zbl
[34] On viscosity and weak solutions for non-homogeneous -Laplace equations, Adv. Nonlinear Anal., Volume 8 (2019) no. 1, pp. 468-481 | DOI | MR
[35] Boundedness and integrability properties of weak solutions of quasilinear elliptic systems, J. Reine Angew. Math., Volume 1982 (1982) no. 333, pp. 191-220 | DOI | MR | Zbl
[36] Monotone (nonlinear) operators in Hilbert space, Duke Math. J., Volume 29 (1962) no. 3, pp. 341-346 | DOI | MR | Zbl
[37] Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, Oxford, 2005
[38] A quasi-autonomous second-order differential inclusion, Trends in Theory and Practice of Non-Linear Analysis, 1985, pp. 387-392 | MR | Zbl
[39] An existence theorem for a difference inclusion in general Banach spaces, J. Math. Anal. Appl., Volume 160 (1991) no. 2, pp. 406-412 | DOI | MR | Zbl
[40] Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 3 (1976) no. 4, pp. 697-718 | Numdam | MR | Zbl
[41] Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Appl. Anal., Volume 6 (1977) no. 4, pp. 319-320 | DOI | Zbl
[42] Linear elliptic p.d.e.'s: level sets, rearrangements and a priori estimates of solutions, Boll. Unione Mat. Ital., B (6), Volume 4 (1985) no. 3, pp. 917-949 | MR | Zbl
[43] The art of rearranging, Milan J. Math., Volume 84 (2016) no. 1, pp. 105-157 | DOI | MR
[44] Anisotropic symmetrization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 4, pp. 539-565 | DOI | Numdam | MR | Zbl
[45] Symmetrization in uniformly elliptic problems, Studies in Mathematical Analysis and Related Topics, Stanford Univ. Press, Stanford, Calif, 1962, pp. 424-428 | MR | Zbl
[46] Zur Frage der Geschwindigkeit des Wachsturms und der Auflösung der Krystallflächen, Z. Kristallogr., Volume 34 (1901)
[47] On the homogenization technique for variational problems, Funct. Anal. Appl., Volume 33 (1999) no. 1, pp. 11-24 | DOI | Zbl
Cité par Sources :