Aggregation-diffusion to constrained interaction: Minimizers & gradient flows in the slow diffusion limit
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 239-279.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Inspired by recent work on minimizers and gradient flows of constrained interaction energies, we prove that these energies arise as the slow diffusion limit of well-known aggregation-diffusion energies. We show that minimizers of aggregation-diffusion energies converge to a minimizer of the constrained interaction energy and gradient flows converge to a gradient flow. Our results apply to a range of interaction potentials, including singular attractive and repulsive-attractive power-law potentials. In the process of obtaining the slow diffusion limit, we also extend the well-posedness theory for aggregation-diffusion equations and Wasserstein gradient flows to admit a wide range of nonconvex interaction potentials. We conclude by applying our results to develop a numerical method for constrained interaction energies, which we use to investigate open questions on set valued minimizers.

DOI : 10.1016/j.anihpc.2019.10.003
Classification : 49J45, 82B21, 82B05, 35R09, 45K05
Mots-clés : Global minimizers, Pair potentials, Aggregation-diffusion equation, Gradient flow, Γ-convergence, Porous medium equation
Craig, Katy 1 ; Topaloglu, Ihsan 2

1 Department of Mathematics, University of California, Santa Barbara, CA, United States of America
2 Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, United States of America
@article{AIHPC_2020__37_2_239_0,
     author = {Craig, Katy and Topaloglu, Ihsan},
     title = {Aggregation-diffusion to constrained interaction: {Minimizers} & gradient flows in the slow diffusion limit},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {239--279},
     publisher = {Elsevier},
     volume = {37},
     number = {2},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.10.003},
     mrnumber = {4072808},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.10.003/}
}
TY  - JOUR
AU  - Craig, Katy
AU  - Topaloglu, Ihsan
TI  - Aggregation-diffusion to constrained interaction: Minimizers & gradient flows in the slow diffusion limit
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 239
EP  - 279
VL  - 37
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.10.003/
DO  - 10.1016/j.anihpc.2019.10.003
LA  - en
ID  - AIHPC_2020__37_2_239_0
ER  - 
%0 Journal Article
%A Craig, Katy
%A Topaloglu, Ihsan
%T Aggregation-diffusion to constrained interaction: Minimizers & gradient flows in the slow diffusion limit
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 239-279
%V 37
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.10.003/
%R 10.1016/j.anihpc.2019.10.003
%G en
%F AIHPC_2020__37_2_239_0
Craig, Katy; Topaloglu, Ihsan. Aggregation-diffusion to constrained interaction: Minimizers & gradient flows in the slow diffusion limit. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 239-279. doi : 10.1016/j.anihpc.2019.10.003. http://www.numdam.org/articles/10.1016/j.anihpc.2019.10.003/

[1] Alexander, D.; Kim, I.; Yao, Y. Quasi-static evolution and congested crowd transport, Nonlinearity, Volume 27 (2014) no. 4, pp. 823–858 ([Online]. Available:) | DOI | MR | Zbl

[2] Ambrosio, L.; Gigli, N.; Savaré, G. Gradient Flows in Metric Spaces and in the Space of Probability Measures, Ser. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008 | MR | Zbl

[3] Ambrosio, L.; Mainini, E.; Serfaty, S. Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011) no. 2, pp. 217–246 ([Online]. Available:) | DOI | Numdam | MR | Zbl

[4] Ambrosio, L.; Serfaty, S. A gradient flow approach to an evolution problem arising in superconductivity, Commun. Pure Appl. Math., Volume 61 (2008) no. 11, pp. 1495–1539 ([Online]. Available:) | DOI | MR | Zbl

[5] Ambrosio, L.; Pratelli, A. Existence and stability results in the L 1 theory of optimal transportation, Optimal Transportation and Applications, Springer, 2003, pp. 123–160 | MR | Zbl

[6] Balagué, D.; Carrillo, J.; Yao, Y. Confinement for repulsive-attractive kernels, Discrete Contin. Dyn. Syst., Ser. B, Volume 19 (2014) no. 5, pp. 1227–1248 ([Online]. Available:) | DOI | MR | Zbl

[7] Bandegi, M.; Shirokoff, D. Approximate global minimizers to pairwise interaction problems via convex relaxation, SIAM J. Appl. Dyn. Syst., Volume 17 (2018) no. 1, pp. 417–456 | DOI | MR

[8] Bedrossian, J. Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion, Appl. Math. Lett., Volume 24 (2011) no. 11, pp. 1927–1932 | DOI | MR | Zbl

[9] Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models, Commun. Math. Sci., Volume 9 (2011) no. 4, pp. 1143–1161 | MR | Zbl

[10] Bedrossian, J.; Rodríguez, N.; Bertozzi, A. Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, Volume 24 (2011) no. 6, pp. 1683–1714 ([Online]. Available:) | DOI | MR | Zbl

[11] Bedrossian, J.; Rodríguez, N. Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in Rd , Discrete Contin. Dyn. Syst., Ser. B, Volume 19 (2014) no. 5, pp. 1279–1309 ([Online]. Available:) | DOI | MR | Zbl

[12] Bertozzi, A.; Slepčev, D. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion, Commun. Pure Appl. Anal., Volume 9 (2010) no. 6, pp. 1617–1637 | MR | Zbl

[13] Bertozzi, A.; Sun, H.; Kolokolnikov, T.; Uminsky, D.; Von Brecht, J. Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci., Volume 13 (2015) no. 4, pp. 955–985 | DOI | MR

[14] Bian, S.; Liu, J.G. Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent m>0 , Commun. Math. Phys., Volume 323 (2013), pp. 1017–1070 | DOI | MR | Zbl

[15] Blanchet, A.; Carlen, E.; Carrillo, J. Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, J. Funct. Anal., Volume 262 (2012) no. 5, pp. 2142–2230 ([Online]. Available:) | DOI | MR | Zbl

[16] Blanchet, A.; Carrillo, J.; Laurençot, P. Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differ. Equ., Volume 35 (2009) no. 2, pp. 133–168 | DOI | MR | Zbl

[17] Blanchet, A.; Calvez, V.; Carrillo, J.A. Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., Volume 46 (2008) no. 2, pp. 691–721 ([Online]. Available:) | DOI | MR | Zbl

[18] Blanchet, A.; Carrillo, J.A.; Masmoudi, N. Infinite time aggregation for the critical Patlak-Keller-Segel model in R2 , Commun. Pure Appl. Math., Volume 61 (2008) no. 10, pp. 1449–1481 ([Online]. Available:) | DOI | MR | Zbl

[19] Blanchet, A.; Dolbeault, J.; Perthame, B. Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differ. Equ., Volume 44 (2006) | MR | Zbl

[20] Burchard, A.; Choksi, R.; Topaloglu, I. Nonlocal shape optimization via interactions of attractive and repulsive potentials, Indiana Univ. Math. J., Volume 67 (2018) no. 1, pp. 375–395 | DOI | MR

[21] Caffarelli, L.A.; Friedman, A. Asymptotic behavior of solutions of ut=Δum as m , Indiana Univ. Math. J., Volume 36 (1987) no. 4, pp. 711–728 ([Online]. Available:) | DOI | MR | Zbl

[22] Calvez, V.; Carrillo, J.A. Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities, Proc. Am. Math. Soc., Volume 140 (2012) no. 10, pp. 3515–3530 ([Online]. Available:) | DOI | MR | Zbl

[23] Calvez, V.; Carrillo, J.A.; Hoffmann, F. Equilibria of homogeneous functionals in the fair-competition regime, Nonlinear Anal., Volume 159 (2017), pp. 85–128 | DOI | MR

[24] Calvez, V.; Carrillo, J.A.; Hoffmann, F. The geometry of diffusing and self-attracting particles in a one-dimensional fair-competition regime, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Springer, 2017, pp. 1–71 | MR

[25] Carlier, G.; Duval, V.; Peyré, G.; Schmitzer, B. Convergence of entropic schemes for optimal transport and gradient flows, SIAM J. Math. Anal., Volume 49 (2017) no. 2, pp. 1385–1418 | DOI | MR

[26] Carrillo, J.A.; Hittmeir, S.; Volzone, B.; Yao, Y. Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics, Invent. Math., Volume 218 (2019) no. 3, pp. 889–977 ([Online]. Available:) | DOI | MR

[27] Carrillo, J.; Lisini, S.; Mainini, E. Uniqueness for Keller-Segel-type chemotaxis models, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 4, pp. 1319–1338 ([Online]. Available:) | DOI | MR | Zbl

[28] Carrillo, J.; McCann, R.; Villani, C. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam., Volume 19 (2003) no. 3, pp. 971–1018 ([Online]. Available:) | DOI | MR | Zbl

[29] Carrillo, J.; McCann, R.; Villani, C. Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., Volume 179 (2006) no. 2, pp. 217–263 ([Online]. Available:) | DOI | MR | Zbl

[30] Carrillo, J.A.; Craig, K.; Yao, Y. Aggregation-Diffusion Equations: Dynamics, Asymptotics, and Singular Limits, Springer International Publishing (2019), pp. 65–108 | DOI | MR

[31] Carrillo, J.A.; Hoffmann, F.; Mainini, E.; Volzone, B. Ground states in the diffusion-dominated regime, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 5 (Art. 127, 28 [Online]. Available:) | DOI | MR

[32] Carrillo, J.A.; Sugiyama, Y. Compactly supported stationary states of the degenerate Keller-Segel system in the diffusion-dominated regime, Indiana Univ. Math. J., Volume 67 (2018) no. 6, pp. 2279–2312 ([Online]. Available:) | DOI | MR

[33] Carrillo, J.A.; Wang, J. Uniform in time L-estimates for nonlinear aggregation-diffusion equations, 2017 (preprint) | arXiv | MR

[34] Carrillo, J.A.; Castorina, D.; Volzone, B. Ground states for diffusion dominated free energies with logarithmic interaction, SIAM J. Math. Anal., Volume 47 (Jan. 2015) no. 1, pp. 1–25 | DOI | MR

[35] Carrillo, J.A.; Craig, K.; Patacchini, F.S. A blob method for diffusion, Calc. Var. Partial Differ. Equ., Volume 58 (2019) no. 2, pp. 53 (Art. 53, 53 [Online]. Available:) | DOI | MR

[36] Carrillo, J.A.; Craig, K.; Wang, L.; Wei, C. Primal dual methods for Wasserstein gradient flows, 2019 (preprint) | arXiv | MR

[37] Chayes, L.; Kim, I.; Yao, Y. An aggregation equation with degenerate diffusion: qualitative property of solutions, SIAM J. Math. Anal., Volume 45 (2013) no. 5, pp. 2995–3018 | DOI | MR | Zbl

[38] Chizat, L.; Di Marino, S. A tumor growth model of Hele-Shaw type as a gradient flow, 2017 (preprint) | arXiv | Numdam | MR | Zbl

[39] Chizat, L.; Peyré, G.; Schmitzer, B.; Vialard, F.-X. Scaling algorithms for unbalanced optimal transport problems, Math. Comput., Volume 87 (2018) no. 314, pp. 2563–2609 ([Online]. Available:) | DOI | MR

[40] Choksi, R.; Fetecau, R.C.; Topaloglu, I. On minimizers of interaction functionals with competing attractive and repulsive potentials, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 6, pp. 1283–1305 ([Online]. Available:) | DOI | Numdam | MR

[41] Choksi, R.; Muratov, C.B.; Topaloglu, I. An old problem resurfaces nonlocally: Gamow's liquid drops inspire today's research and applications, Not. Am. Math. Soc., Volume 64 (2017) no. 11, pp. 1275–1283 | MR

[42] Craig, K. Nonconvex gradient flow in the Wasserstein metric and applications to constrained nonlocal interactions, Proc. Lond. Math. Soc., Volume 114 (2017) no. 1, pp. 60–102 | DOI | MR

[43] Craig, K.; Bertozzi, A.L. A blob method for the aggregation equation, Math. Comput., Volume 85 (2016) no. 300, pp. 1681–1717 ([Online]. Available:) | DOI | MR

[44] Craig, K.; Kim, I.; Yao, Y. Congested aggregation via Newtonian interaction, Arch. Ration. Mech. Anal., Volume 227 (2018) no. 1, pp. 1–67 ([Online]. Available:) | DOI | MR

[45] Craig, K.; Topaloglu, I. Convergence of regularized nonlocal interaction energies, SIAM J. Math. Anal., Volume 48 (2016) no. 1, pp. 34–60 ([Online]. Available:) | DOI | MR

[46] Frank, R.L.; Lieb, E.H. A “liquid-solid” phase transition in a simple model for swarming, based on the “no flat-spots” theorem for subharmonic functions, Indiana Univ. Math. J., Volume 67 (2018) no. 4, pp. 1547–1569 ([Online]. Available:) | DOI | MR

[47] Gallouët, T.; Laborde, M.; Monsaingeon, L. An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems, ESAIM Control Optim. Calc. Var., Volume 25 (2019) (Art. 8, 32 [Online]. Available:) | DOI | Numdam | MR | Zbl

[48] Kim, I.; Požár, N. Porous medium equation to Hele-Shaw flow with general initial density, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 873–909 ([Online]. Available:) | DOI | MR

[49] Kim, I.; Yao, Y. The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle, SIAM J. Math. Anal., Volume 44 (2012) no. 2, pp. 568–602 ([Online]. Available:) | DOI | MR | Zbl

[50] Leoni, G. A First Course in Sobolev Spaces, Ser. Graduate Studies in Mathematics, vol. 181, American Mathematical Society, Providence, RI, 2017 | MR

[51] Lieb, E.; Loss, M. Analysis, Ser. Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001 | MR | Zbl

[52] Lions, P.-L. The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109–145 ([Online]. Available:) | Numdam | MR | Zbl

[53] Liu, J.-G.; Wang, L.; Zhou, Z. Positivity-preserving and asymptotic preserving method for 2d Keller-Segel equations, Math. Comput., Volume 87 (2018) no. 311, pp. 1165–1189 | MR | Zbl

[54] Loeper, G. Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl., Volume 86 (2006) no. 1, pp. 68–79 | DOI | MR | Zbl

[55] Lopes, O. Uniqueness and radial symmetry of minimizers for a nonlocal variational problem, Commun. Pure Appl. Anal., Volume 18 (2019) no. 5, pp. 2265–2282 | MR | Zbl

[56] Maury, B.; Roudneff-Chupin, A.; Santambrogio, F. A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., Volume 20 (2010) no. 10, pp. 1787–1821 ([Online]. Available:) | DOI | MR | Zbl

[57] Maury, B.; Roudneff-Chupin, A.; Santambrogio, F.; Venel, J. Handling congestion in crowd motion modeling, Netw. Heterog. Media, Volume 6 (2011) no. 3, pp. 485–519 ([Online]. Available:) | DOI | MR | Zbl

[58] McCann, R. A convexity principle for interacting gases, Adv. Math., Volume 128 (1997) no. 1, pp. 153–179 ([Online]. Available:) | DOI | MR | Zbl

[59] Mellet, A.; Perthame, B.; Quiros, F. A Hele–Shaw problem for tumor growth, J. Funct. Anal., Volume 273 (2017) no. 10, pp. 3061–3093 | DOI | MR | Zbl

[60] Mizuta, Y. Potential Theory in Euclidean Spaces, Gakkōtosho, Tokyo, 1996 | MR | Zbl

[61] Perthame, B.; Quirós, F.; Vázquez, J.L. The Hele–Shaw asymptotics for mechanical models of tumor growth, Arch. Ration. Mech. Anal., Volume 212 (2014) no. 1, pp. 93–127 | DOI | MR | Zbl

[62] Peyré, G. Entropic approximation of Wasserstein gradient flows, SIAM J. Imaging Sci., Volume 8 (2015) no. 4, pp. 2323–2351 | DOI | MR | Zbl

[63] Rein, G. Reduction and a concentration-compactness principle for energy-Casimir functionals, SIAM J. Math. Anal., Volume 33 (2001) no. 4, pp. 896–912 ([Online]. Available:) | DOI | MR | Zbl

[64] Serfaty, S. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst., Volume 31 (2011) no. 4, pp. 1427–1451 ([Online]. Available:) | DOI | MR | Zbl

[65] Simione, R.; Slepčev, D.; Topaloglu, I. Existence of ground states of nonlocal-interaction energies, J. Stat. Phys., Volume 159 (2015) no. 4, pp. 972–986 ([Online]. Available:) | DOI | MR | Zbl

[66] Stein, E.M. Singular Integrals and Differentiability Properties of Functions (PMS-30), vol. 30, Princeton University Press, 2016 | MR | Zbl

[67] Sugiyama, Y. Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Differ. Integral Equ., Volume 19 (2006) no. 8, pp. 841–876 | MR | Zbl

[68] van der Vaart, A.; Wellner, J. Weak Convergence and Empirical Processes: With Applications to Statistics, Ser. Springer Series in Statistics, Springer, 1996 http://books.google.com/books?id=seH8dMrEgggC ([Online]. Available:) | DOI | MR | Zbl

[69] Villani, C. Topics in Optimal Transportation, Ser. Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

[70] Yao, Y.; Bertozzi, A. Blow-up dynamics for the aggregation equation with degenerate diffusion, Physica D, Volume 260 (2013), pp. 77–89 ([Online]. Available:) | DOI | MR | Zbl

[71] Yao, Y. Asymptotic behavior for critical Patlak-Keller-Segel model and a repulsive-attractive aggregation equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014) no. 1, pp. 81–101 ([Online]. Available:) | DOI | Numdam | MR | Zbl

Cité par Sources :