A higher speed type II blowup for the five dimensional energy critical heat equation
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 309-341.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

This paper is concerned with blow-up solutions of the five dimensional energy critical heat equation ut=Δu+|u|43u. A goal of this paper is to show the existence of type II blowup solutions which behave as u(t)(Tt)3k (k=2,3,). These solutions are the same ones formally derived by Filippas, Herrero and Velázquez [8]. We find a mistake in their blowup rate and correct it.

DOI : 10.1016/j.anihpc.2019.09.006
Mots-clés : Semilinear heat equation, Energy critical, Type II blowup, Matched asymptotic expansion
@article{AIHPC_2020__37_2_309_0,
     author = {Harada, Junichi},
     title = {A higher speed type {II} blowup for the five dimensional energy critical heat equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {309--341},
     publisher = {Elsevier},
     volume = {37},
     number = {2},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.09.006},
     mrnumber = {4072807},
     zbl = {1433.35007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.09.006/}
}
TY  - JOUR
AU  - Harada, Junichi
TI  - A higher speed type II blowup for the five dimensional energy critical heat equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 309
EP  - 341
VL  - 37
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.09.006/
DO  - 10.1016/j.anihpc.2019.09.006
LA  - en
ID  - AIHPC_2020__37_2_309_0
ER  - 
%0 Journal Article
%A Harada, Junichi
%T A higher speed type II blowup for the five dimensional energy critical heat equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 309-341
%V 37
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.09.006/
%R 10.1016/j.anihpc.2019.09.006
%G en
%F AIHPC_2020__37_2_309_0
Harada, Junichi. A higher speed type II blowup for the five dimensional energy critical heat equation. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 309-341. doi : 10.1016/j.anihpc.2019.09.006. http://www.numdam.org/articles/10.1016/j.anihpc.2019.09.006/

[1] Collot, C.; Merle, F.; Raphaël, P. Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions, Commun. Math. Phys., Volume 352 (2017) no. 1, pp. 215–285 | DOI | MR | Zbl

[2] Cortázar, C.; del Pino, M.; Musso, M. Green's function and infinite-time bubbling in the critical nonlinear heat equation (preprint) | arXiv | MR

[3] Davila, J.; del Pino, M.; Wei, J. Singularity formation for the two-dimensional harmonic map flow into S2 (preprint) | arXiv | MR

[4] del Pino, M.; Musso, M.; Wei, J. Infinite time blow-up for the 3-dimensional energy critical heat equation (preprint) | arXiv | MR

[5] del Pino, M.; Musso, M.; Wei, J. Geometry driven type II higher dimensional blow-up for the critical heat equation (preprint) | arXiv | MR

[6] del Pino, M.; Musso, M.; Wei, J. Type II blow-up in the 5-dimensional energy critical heat equation, Acta Math. Sin. (Engl. Ser.), Volume 35 (2019) no. 6, pp. 1027–1042 | DOI | MR | Zbl

[7] Duyckaerts, T.; Merle, F. Dynamics of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP, Volume 2008 (2008) | MR | Zbl

[8] Filippas, S.; Herrero, M.A.; Velázquez, J.J.L. Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., Volume 456 (2000) no. 2004, pp. 2957–2982 | MR | Zbl

[9] Giga, Y.; Kohn, R. Characterizing blowup using similarity variables, Indiana Univ. Math. J., Volume 36 (1987) no. 1, pp. 1–40 | DOI | MR | Zbl

[10] Harada, J. Blowup profile for a complex valued semilinear heat equation, J. Funct. Anal., Volume 270 (2016) no. 11, pp. 4213–4255 | DOI | MR | Zbl

[11] Harada, J. Construction of type II blow-up solutions for a semilinear parabolic system with higher dimension, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4 | DOI | MR | Zbl

[12] Herrero, M.A.; Velázquez, J.J.L. Explosion de solutions d'équations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris, Ser. I, Volume 319 (1994) no. 2, pp. 141–145 | MR | Zbl

[13] M.A. Herrero, J.J.L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, unpublished.

[14] Lieberman, G.M. Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996 | DOI | MR | Zbl

[15] Matano, H.; Merle, F. On nonexistence of type II blowup for a supercritical nonlinear heat equation, Commun. Pure Appl. Math., Volume 57 (2004) no. 11, pp. 1494–1541 | DOI | MR | Zbl

[16] Merle, F.; Raphaël, P.; Rodnianski, I. Blowup dynamics for smooth data equivariant solutions to the critical Schrodinger map problem, Invent. Math., Volume 193 (2013) no. 2, pp. 249–365 | DOI | MR | Zbl

[17] Mizoguchi, N. Type-II blowup for a semilinear heat equation, Adv. Differ. Equ., Volume 9 (2004) no. 11–12, pp. 1279–1316 | MR | Zbl

[18] Raphaël, P.; Rodnianski, I. Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci., Volume 115 (2012), pp. 1–122 | DOI | Numdam | MR | Zbl

[19] Seki, Y. Type II blow-up mechanisms in a semilinear heat equation with critical Joseph-Lundgren exponent, J. Funct. Anal., Volume 275 (2018) no. 12, pp. 3380–3456 | DOI | MR | Zbl

[20] Schweyer, R. Type II blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal., Volume 263 (2012) no. 12, pp. 3922–3983 | DOI | MR | Zbl

Cité par Sources :