This paper is concerned with blow-up solutions of the five dimensional energy critical heat equation . A goal of this paper is to show the existence of type II blowup solutions which behave as (). These solutions are the same ones formally derived by Filippas, Herrero and Velázquez [8]. We find a mistake in their blowup rate and correct it.
@article{AIHPC_2020__37_2_309_0, author = {Harada, Junichi}, title = {A higher speed type {II} blowup for the five dimensional energy critical heat equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {309--341}, publisher = {Elsevier}, volume = {37}, number = {2}, year = {2020}, doi = {10.1016/j.anihpc.2019.09.006}, mrnumber = {4072807}, zbl = {1433.35007}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.09.006/} }
TY - JOUR AU - Harada, Junichi TI - A higher speed type II blowup for the five dimensional energy critical heat equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 309 EP - 341 VL - 37 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.09.006/ DO - 10.1016/j.anihpc.2019.09.006 LA - en ID - AIHPC_2020__37_2_309_0 ER -
%0 Journal Article %A Harada, Junichi %T A higher speed type II blowup for the five dimensional energy critical heat equation %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 309-341 %V 37 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.09.006/ %R 10.1016/j.anihpc.2019.09.006 %G en %F AIHPC_2020__37_2_309_0
Harada, Junichi. A higher speed type II blowup for the five dimensional energy critical heat equation. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 309-341. doi : 10.1016/j.anihpc.2019.09.006. http://www.numdam.org/articles/10.1016/j.anihpc.2019.09.006/
[1] Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions, Commun. Math. Phys., Volume 352 (2017) no. 1, pp. 215–285 | DOI | MR | Zbl
[2] Green's function and infinite-time bubbling in the critical nonlinear heat equation (preprint) | arXiv | MR
[3] Singularity formation for the two-dimensional harmonic map flow into (preprint) | arXiv | MR
[4] Infinite time blow-up for the 3-dimensional energy critical heat equation (preprint) | arXiv | MR
[5] Geometry driven type II higher dimensional blow-up for the critical heat equation (preprint) | arXiv | MR
[6] Type II blow-up in the 5-dimensional energy critical heat equation, Acta Math. Sin. (Engl. Ser.), Volume 35 (2019) no. 6, pp. 1027–1042 | DOI | MR | Zbl
[7] Dynamics of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP, Volume 2008 (2008) | MR | Zbl
[8] Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., Volume 456 (2000) no. 2004, pp. 2957–2982 | MR | Zbl
[9] Characterizing blowup using similarity variables, Indiana Univ. Math. J., Volume 36 (1987) no. 1, pp. 1–40 | DOI | MR | Zbl
[10] Blowup profile for a complex valued semilinear heat equation, J. Funct. Anal., Volume 270 (2016) no. 11, pp. 4213–4255 | DOI | MR | Zbl
[11] Construction of type II blow-up solutions for a semilinear parabolic system with higher dimension, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4 | DOI | MR | Zbl
[12] Explosion de solutions d'équations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris, Ser. I, Volume 319 (1994) no. 2, pp. 141–145 | MR | Zbl
[13] M.A. Herrero, J.J.L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, unpublished.
[14] Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996 | DOI | MR | Zbl
[15] On nonexistence of type II blowup for a supercritical nonlinear heat equation, Commun. Pure Appl. Math., Volume 57 (2004) no. 11, pp. 1494–1541 | DOI | MR | Zbl
[16] Blowup dynamics for smooth data equivariant solutions to the critical Schrodinger map problem, Invent. Math., Volume 193 (2013) no. 2, pp. 249–365 | DOI | MR | Zbl
[17] Type-II blowup for a semilinear heat equation, Adv. Differ. Equ., Volume 9 (2004) no. 11–12, pp. 1279–1316 | MR | Zbl
[18] Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci., Volume 115 (2012), pp. 1–122 | DOI | Numdam | MR | Zbl
[19] Type II blow-up mechanisms in a semilinear heat equation with critical Joseph-Lundgren exponent, J. Funct. Anal., Volume 275 (2018) no. 12, pp. 3380–3456 | DOI | MR | Zbl
[20] Type II blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal., Volume 263 (2012) no. 12, pp. 3922–3983 | DOI | MR | Zbl
Cité par Sources :