This paper is concerned with blow-up solutions of the five dimensional energy critical heat equation
@article{AIHPC_2020__37_2_309_0, author = {Harada, Junichi}, title = {A higher speed type {II} blowup for the five dimensional energy critical heat equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {309--341}, publisher = {Elsevier}, volume = {37}, number = {2}, year = {2020}, doi = {10.1016/j.anihpc.2019.09.006}, mrnumber = {4072807}, zbl = {1433.35007}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2019.09.006/} }
TY - JOUR AU - Harada, Junichi TI - A higher speed type II blowup for the five dimensional energy critical heat equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 309 EP - 341 VL - 37 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2019.09.006/ DO - 10.1016/j.anihpc.2019.09.006 LA - en ID - AIHPC_2020__37_2_309_0 ER -
%0 Journal Article %A Harada, Junichi %T A higher speed type II blowup for the five dimensional energy critical heat equation %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 309-341 %V 37 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2019.09.006/ %R 10.1016/j.anihpc.2019.09.006 %G en %F AIHPC_2020__37_2_309_0
Harada, Junichi. A higher speed type II blowup for the five dimensional energy critical heat equation. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 309-341. doi : 10.1016/j.anihpc.2019.09.006. https://www.numdam.org/articles/10.1016/j.anihpc.2019.09.006/
[1] Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions, Commun. Math. Phys., Volume 352 (2017) no. 1, pp. 215–285 | DOI | MR | Zbl
[2] Green's function and infinite-time bubbling in the critical nonlinear heat equation (preprint) | arXiv | MR
[3] Singularity formation for the two-dimensional harmonic map flow into
[4] Infinite time blow-up for the 3-dimensional energy critical heat equation (preprint) | arXiv | MR
[5] Geometry driven type II higher dimensional blow-up for the critical heat equation (preprint) | arXiv | MR
[6] Type II blow-up in the 5-dimensional energy critical heat equation, Acta Math. Sin. (Engl. Ser.), Volume 35 (2019) no. 6, pp. 1027–1042 | DOI | MR | Zbl
[7] Dynamics of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP, Volume 2008 (2008) | MR | Zbl
[8] Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., Volume 456 (2000) no. 2004, pp. 2957–2982 | MR | Zbl
[9] Characterizing blowup using similarity variables, Indiana Univ. Math. J., Volume 36 (1987) no. 1, pp. 1–40 | DOI | MR | Zbl
[10] Blowup profile for a complex valued semilinear heat equation, J. Funct. Anal., Volume 270 (2016) no. 11, pp. 4213–4255 | DOI | MR | Zbl
[11] Construction of type II blow-up solutions for a semilinear parabolic system with higher dimension, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4 | DOI | MR | Zbl
[12] Explosion de solutions d'équations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris, Ser. I, Volume 319 (1994) no. 2, pp. 141–145 | MR | Zbl
[13] M.A. Herrero, J.J.L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, unpublished.
[14] Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996 | DOI | MR | Zbl
[15] On nonexistence of type II blowup for a supercritical nonlinear heat equation, Commun. Pure Appl. Math., Volume 57 (2004) no. 11, pp. 1494–1541 | DOI | MR | Zbl
[16] Blowup dynamics for smooth data equivariant solutions to the critical Schrodinger map problem, Invent. Math., Volume 193 (2013) no. 2, pp. 249–365 | DOI | MR | Zbl
[17] Type-II blowup for a semilinear heat equation, Adv. Differ. Equ., Volume 9 (2004) no. 11–12, pp. 1279–1316 | MR | Zbl
[18] Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci., Volume 115 (2012), pp. 1–122 | DOI | Numdam | MR | Zbl
[19] Type II blow-up mechanisms in a semilinear heat equation with critical Joseph-Lundgren exponent, J. Funct. Anal., Volume 275 (2018) no. 12, pp. 3380–3456 | DOI | MR | Zbl
[20] Type II blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal., Volume 263 (2012) no. 12, pp. 3922–3983 | DOI | MR | Zbl
Cité par Sources :