Continuity of composition operators in Sobolev spaces
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2053-2063.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We prove that all the composition operators Tf(g):=fg, which take the Adams-Frazier space WpmW˙mp1(Rn) to itself, are continuous mappings from WpmW˙mp1(Rn) to itself, for every integer m2 and every real number 1p<. The same automatic continuity property holds for Sobolev spaces Wpm(Rn) for m2 and 1p<.

DOI : 10.1016/j.anihpc.2019.07.002
Classification : 46E35, 47H30
Mots-clés : Composition operators, Sobolev spaces
Bourdaud, Gérard 1 ; Moussai, Madani 2

1 Université de Paris, I.M.J. - P.R.G., Case 7012, 75205 Paris Cedex 13, France
2 Laboratory of Functional Analysis and Geometry of Spaces, M. Boudiaf University of M'Sila, 28000 M'Sila, Algeria
@article{AIHPC_2019__36_7_2053_0,
     author = {Bourdaud, G\'erard and Moussai, Madani},
     title = {Continuity of composition operators in {Sobolev} spaces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {2053--2063},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.07.002},
     mrnumber = {4020533},
     zbl = {1456.46028},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.002/}
}
TY  - JOUR
AU  - Bourdaud, Gérard
AU  - Moussai, Madani
TI  - Continuity of composition operators in Sobolev spaces
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 2053
EP  - 2063
VL  - 36
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.002/
DO  - 10.1016/j.anihpc.2019.07.002
LA  - en
ID  - AIHPC_2019__36_7_2053_0
ER  - 
%0 Journal Article
%A Bourdaud, Gérard
%A Moussai, Madani
%T Continuity of composition operators in Sobolev spaces
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 2053-2063
%V 36
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.002/
%R 10.1016/j.anihpc.2019.07.002
%G en
%F AIHPC_2019__36_7_2053_0
Bourdaud, Gérard; Moussai, Madani. Continuity of composition operators in Sobolev spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2053-2063. doi : 10.1016/j.anihpc.2019.07.002. http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.002/

[1] Adams, D.R.; Frazier, M. Composition operators on potential spaces, Proc. Am. Math. Soc., Volume 114 (1992), pp. 155–165 | DOI | MR | Zbl

[2] Allaoui, S.E.; Bourdaud, G. Composition dans les espaces de Besov critiques, Ann. Fac. Sci. Toulouse, Volume 25 (2016), pp. 875–893 | DOI | Numdam | MR | Zbl

[3] Allaoui, S.E.; Bourdaud, G. Localisation uniforme des espaces de Besov et de Lizorkin-Triebel, Arch. Math., Volume 109 (2017), pp. 551–562 | DOI | MR | Zbl

[4] Ambrosetti, A.; Prodi, G. A Primer on Nonlinear Analysis, Cambridge U.P., 1993 | MR | Zbl

[5] Ancona, A. Continuité des contractions dans les espaces de Dirichlet, C. R. Acad. Sci., Volume 282 (1976), pp. 871–873 (and Springer LNM, vol. 563, 1976, 1–26) | MR | Zbl

[6] Appell, J.; Zabrejko, P.P. Nonlinear Superposition Operators, Cambridge U.P., 1990 | DOI | MR

[7] Bourbaki, N. Elements of Mathematics, Algebra I, Hermann, Paris, 1974 (Chapters 1–3) | Zbl

[8] Bourdaud, G. Réalisations des espaces de Besov homogènes, Ark. Mat., Volume 26 (1988), pp. 41–54 | DOI | MR | Zbl

[9] Bourdaud, G. Localisations des espaces de Besov, Stud. Math., Volume 90 (1988), pp. 153–163 | DOI | MR | Zbl

[10] Bourdaud, G. Le calcul fonctionnel dans les espaces de Sobolev, Invent. Math., Volume 104 (1991), pp. 435–446 | DOI | Numdam | MR | Zbl

[11] Bourdaud, G. Superposition in homogeneous and vector valued Sobolev spaces, Trans. Am. Math. Soc., Volume 362 (2010), pp. 6105–6130 | DOI | MR | Zbl

[12] Bourdaud, G. Realizations of homogeneous Sobolev spaces, Complex Var. Elliptic Equ., Volume 56 (2011), pp. 857–874 | DOI | MR | Zbl

[13] Bourdaud, G. Realizations of homogeneous Besov and Lizorkin-Triebel spaces, Math. Nachr., Volume 286 (2013), pp. 476–491 | DOI | MR | Zbl

[14] Bourdaud, G.; Lanza de Cristoforis, M. Regularity of the symbolic calculus in Besov algebras, Stud. Math., Volume 184 (2008), pp. 271–298 | DOI | MR | Zbl

[15] Bourdaud, G.; Moussai, M.; Sickel, W. Composition operators acting on Besov spaces on the real line, Ann. Math. Pura Appl., Volume 193 (2014), pp. 1519–1554 | DOI | MR | Zbl

[16] Bourdaud, G.; Sickel, W. Composition operators on function spaces with fractional order of smoothness, RIMS Kôkyûroku Bessatsu B, Volume 26 (2011), pp. 93–132 | MR | Zbl

[17] Brezis, H.; Mironescu, P. Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., Volume 1 (2001), pp. 387–404 | DOI | MR | Zbl

[18] Calkin, J.W. Functions of several variables and absolute continuity I, Duke Math. J., Volume 6 (1940), pp. 170–186 | DOI | JFM | MR

[19] Dahlberg, B.E.J. A note on Sobolev spaces, Proc. Symp. Pure Math., Volume 35 (1979) no. 1, pp. 183–185 | DOI | MR | Zbl

[20] Dincă, G.; Isaia, F. On the continuity of superposition operators between higher-order Sobolev spaces in the supercritical case, Ann. Univ. Buchar. Math. Ser., Volume 4 (2013) no. LXII, pp. 455–478 | MR | Zbl

[21] Dincă, G.; Isaia, F. On superposition operators between higher-order Sobolev spaces and a multivariate Faà di Bruno formula: the subcritical case, Differ. Integral Equ., Volume 26 (2013), pp. 11–58 | MR | Zbl

[22] Dincă, G.; Isaia, F. Superposition operators between higher-order Sobolev spaces and a multivariate Faà di Bruno formula: supercritical case, Adv. Nonlinear Stud., Volume 14 (2014), pp. 137–158 | DOI | MR | Zbl

[23] Isaia, F. On the superposition operator between Sobolev spaces: well-definedness, continuity, boundedness, and higher-order chain rule, Houst. J. Math., Volume 41 (2015), pp. 1277–1294 | MR | Zbl

[24] Kusolitsch, N. Why the theorem of Scheffé should be rather called a theorem of Riesz, Period. Math. Hung., Volume 61 (2010), pp. 225–229 | DOI | MR | Zbl

[25] Marcus, M.; Mizel, V.J. Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal., Volume 33 (1979), pp. 217–229 | DOI | MR | Zbl

[26] Maz'ya, V. Sobolev Spaces, Springer, Berlin, 1985 | MR | Zbl

[27] Riesz, F. Sur la convergence en moyenne, Acta Sci. Math., Volume 4 (1928), pp. 58–64 | JFM

[28] Runst, T.; Sickel, W. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter, Berlin, 1996 | DOI | MR | Zbl

[29] Scheffé, H. A useful convergence theorem for probability distributions, Ann. Math. Stat., Volume 18 (1947), pp. 434–438 | DOI | MR | Zbl

Cité par Sources :