We prove that all the composition operators , which take the Adams-Frazier space to itself, are continuous mappings from to itself, for every integer and every real number . The same automatic continuity property holds for Sobolev spaces for and .
Mots-clés : Composition operators, Sobolev spaces
@article{AIHPC_2019__36_7_2053_0, author = {Bourdaud, G\'erard and Moussai, Madani}, title = {Continuity of composition operators in {Sobolev} spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2053--2063}, publisher = {Elsevier}, volume = {36}, number = {7}, year = {2019}, doi = {10.1016/j.anihpc.2019.07.002}, mrnumber = {4020533}, zbl = {1456.46028}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.002/} }
TY - JOUR AU - Bourdaud, Gérard AU - Moussai, Madani TI - Continuity of composition operators in Sobolev spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 2053 EP - 2063 VL - 36 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.002/ DO - 10.1016/j.anihpc.2019.07.002 LA - en ID - AIHPC_2019__36_7_2053_0 ER -
%0 Journal Article %A Bourdaud, Gérard %A Moussai, Madani %T Continuity of composition operators in Sobolev spaces %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 2053-2063 %V 36 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.002/ %R 10.1016/j.anihpc.2019.07.002 %G en %F AIHPC_2019__36_7_2053_0
Bourdaud, Gérard; Moussai, Madani. Continuity of composition operators in Sobolev spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2053-2063. doi : 10.1016/j.anihpc.2019.07.002. http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.002/
[1] Composition operators on potential spaces, Proc. Am. Math. Soc., Volume 114 (1992), pp. 155–165 | DOI | MR | Zbl
[2] Composition dans les espaces de Besov critiques, Ann. Fac. Sci. Toulouse, Volume 25 (2016), pp. 875–893 | DOI | Numdam | MR | Zbl
[3] Localisation uniforme des espaces de Besov et de Lizorkin-Triebel, Arch. Math., Volume 109 (2017), pp. 551–562 | DOI | MR | Zbl
[4] A Primer on Nonlinear Analysis, Cambridge U.P., 1993 | MR | Zbl
[5] Continuité des contractions dans les espaces de Dirichlet, C. R. Acad. Sci., Volume 282 (1976), pp. 871–873 (and Springer LNM, vol. 563, 1976, 1–26) | MR | Zbl
[6] Nonlinear Superposition Operators, Cambridge U.P., 1990 | DOI | MR
[7] Elements of Mathematics, Algebra I, Hermann, Paris, 1974 (Chapters 1–3) | Zbl
[8] Réalisations des espaces de Besov homogènes, Ark. Mat., Volume 26 (1988), pp. 41–54 | DOI | MR | Zbl
[9] Localisations des espaces de Besov, Stud. Math., Volume 90 (1988), pp. 153–163 | DOI | MR | Zbl
[10] Le calcul fonctionnel dans les espaces de Sobolev, Invent. Math., Volume 104 (1991), pp. 435–446 | DOI | Numdam | MR | Zbl
[11] Superposition in homogeneous and vector valued Sobolev spaces, Trans. Am. Math. Soc., Volume 362 (2010), pp. 6105–6130 | DOI | MR | Zbl
[12] Realizations of homogeneous Sobolev spaces, Complex Var. Elliptic Equ., Volume 56 (2011), pp. 857–874 | DOI | MR | Zbl
[13] Realizations of homogeneous Besov and Lizorkin-Triebel spaces, Math. Nachr., Volume 286 (2013), pp. 476–491 | DOI | MR | Zbl
[14] Regularity of the symbolic calculus in Besov algebras, Stud. Math., Volume 184 (2008), pp. 271–298 | DOI | MR | Zbl
[15] Composition operators acting on Besov spaces on the real line, Ann. Math. Pura Appl., Volume 193 (2014), pp. 1519–1554 | DOI | MR | Zbl
[16] Composition operators on function spaces with fractional order of smoothness, RIMS Kôkyûroku Bessatsu B, Volume 26 (2011), pp. 93–132 | MR | Zbl
[17] Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., Volume 1 (2001), pp. 387–404 | DOI | MR | Zbl
[18] Functions of several variables and absolute continuity I, Duke Math. J., Volume 6 (1940), pp. 170–186 | DOI | JFM | MR
[19] A note on Sobolev spaces, Proc. Symp. Pure Math., Volume 35 (1979) no. 1, pp. 183–185 | DOI | MR | Zbl
[20] On the continuity of superposition operators between higher-order Sobolev spaces in the supercritical case, Ann. Univ. Buchar. Math. Ser., Volume 4 (2013) no. LXII, pp. 455–478 | MR | Zbl
[21] On superposition operators between higher-order Sobolev spaces and a multivariate Faà di Bruno formula: the subcritical case, Differ. Integral Equ., Volume 26 (2013), pp. 11–58 | MR | Zbl
[22] Superposition operators between higher-order Sobolev spaces and a multivariate Faà di Bruno formula: supercritical case, Adv. Nonlinear Stud., Volume 14 (2014), pp. 137–158 | DOI | MR | Zbl
[23] On the superposition operator between Sobolev spaces: well-definedness, continuity, boundedness, and higher-order chain rule, Houst. J. Math., Volume 41 (2015), pp. 1277–1294 | MR | Zbl
[24] Why the theorem of Scheffé should be rather called a theorem of Riesz, Period. Math. Hung., Volume 61 (2010), pp. 225–229 | DOI | MR | Zbl
[25] Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal., Volume 33 (1979), pp. 217–229 | DOI | MR | Zbl
[26] Sobolev Spaces, Springer, Berlin, 1985 | MR | Zbl
[27] Sur la convergence en moyenne, Acta Sci. Math., Volume 4 (1928), pp. 58–64 | JFM
[28] Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter, Berlin, 1996 | DOI | MR | Zbl
[29] A useful convergence theorem for probability distributions, Ann. Math. Stat., Volume 18 (1947), pp. 434–438 | DOI | MR | Zbl
Cité par Sources :