Stationary solutions to coagulation-fragmentation equations
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1903-1939.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Existence of stationary solutions to the coagulation-fragmentation equation is shown when the coagulation kernel K and the overall fragmentation rate a are given by K(x,y)=xαyβ+xβyα and a(x)=xγ, respectively, with 0αβ1, α+β[0,1), and γ>0. The proof requires two steps: a dynamical approach is first used to construct stationary solutions under the additional assumption that the coagulation kernel and the overall fragmentation rate are bounded from below by a positive constant. The general case is then handled by a compactness argument.

DOI : 10.1016/j.anihpc.2019.06.003
Classification : 45K05, 45M99
Mots-clés : Coagulation, Fragmentation, Stationary solution, Mass conservation
@article{AIHPC_2019__36_7_1903_0,
     author = {Lauren\c{c}ot, Philippe},
     title = {Stationary solutions to coagulation-fragmentation equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1903--1939},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.06.003},
     mrnumber = {4020528},
     zbl = {1431.45009},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.06.003/}
}
TY  - JOUR
AU  - Laurençot, Philippe
TI  - Stationary solutions to coagulation-fragmentation equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1903
EP  - 1939
VL  - 36
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.06.003/
DO  - 10.1016/j.anihpc.2019.06.003
LA  - en
ID  - AIHPC_2019__36_7_1903_0
ER  - 
%0 Journal Article
%A Laurençot, Philippe
%T Stationary solutions to coagulation-fragmentation equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1903-1939
%V 36
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.06.003/
%R 10.1016/j.anihpc.2019.06.003
%G en
%F AIHPC_2019__36_7_1903_0
Laurençot, Philippe. Stationary solutions to coagulation-fragmentation equations. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1903-1939. doi : 10.1016/j.anihpc.2019.06.003. http://www.numdam.org/articles/10.1016/j.anihpc.2019.06.003/

[1] Aizenman, M.; Bak, T.A. Convergence to equilibrium in a system of reacting polymers, Commun. Math. Phys., Volume 65 (1979), pp. 203–230 | DOI | MR | Zbl

[2] Amann, H. Ordinary Differential Equations, De Gruyter Studies in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1990 (An introduction to nonlinear analysis, translated from the German by Gerhard Metzen) | MR | Zbl

[3] Arlotti, L.; Banasiak, J. Strictly substochastic semigroups with application to conservative and shattering solutions to fragmentation equations with mass loss, J. Math. Anal. Appl., Volume 293 (2004), pp. 693–720 | DOI | MR | Zbl

[4] Banasiak, J.; Lamb, W.; Laurençot, Ph. Analytic Methods for Coagulation-Fragmentation Models, Volume I & II, Chapman & Hall/CRC Monographs and Research Notes in Mathematics, CRC Press, 2019 | MR

[5] Carr, J. Asymptotic behaviour of solutions to the coagulation-fragmentation equations. I. The strong fragmentation case, Proc. R. Soc. Edinb. A, Volume 121 (1992), pp. 231–244 | DOI | MR | Zbl

[6] Carr, J.; da Costa, F.P. Asymptotic behavior of solutions to the coagulation-fragmentation equations. II. Weak fragmentation, J. Stat. Phys., Volume 77 (1994), pp. 89–123 | DOI | MR | Zbl

[7] Degond, P.; Liu, J.-G.; Pego, R.L. Coagulation–fragmentation model for animal group-size statistics, J. Nonlinear Sci., Volume 27 (2017), pp. 379–424 | DOI | MR | Zbl

[8] Dubovskii, P.B. Mathematical Theory of Coagulation, Lecture Notes Series, Seoul, vol. 23, National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994 | MR | Zbl

[9] Dubovskiĭ, P.B.; Stewart, I.W. Trend to equilibrium for the coagulation-fragmentation equation, Math. Methods Appl. Sci., Volume 19 (1996), pp. 761–772 | MR | Zbl

[10] Escobedo, M.; Laurençot, Ph.; Mischler, S.; Perthame, B. Gelation and mass conservation in coagulation-fragmentation models, J. Differ. Equ., Volume 195 (2003), pp. 143–174 | DOI | MR | Zbl

[11] Escobedo, M.; Mischler, S.; Perthame, B. Gelation in coagulation and fragmentation models, Commun. Math. Phys., Volume 231 (2002), pp. 157–188 | DOI | MR | Zbl

[12] Escobedo, M.; Mischler, S.; Rodriguez Ricard, M. On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005), pp. 99–125 | DOI | Numdam | MR | Zbl

[13] Filippov, A.F. On the distribution of the sizes of particles which undergo splitting, Theory Probab. Appl., Volume 6 (1961), pp. 275–294 | DOI | Zbl

[14] Fournier, N.; Laurençot, Ph. Existence of self-similar solutions to Smoluchowski's coagulation equation, Commun. Math. Phys., Volume 256 (2005), pp. 589–609 | DOI | MR | Zbl

[15] Gamba, I.M.; Panferov, V.; Villani, C. On the Boltzmann equation for diffusively excited granular media, Commun. Math. Phys., Volume 246 (2004), pp. 503–541 | DOI | MR | Zbl

[16] Jeon, I. Existence of gelling solutions for coagulation-fragmentation equations, Commun. Math. Phys., Volume 194 (1998), pp. 541–567 | DOI | MR | Zbl

[17] Laurençot, Ph. On a class of continuous coagulation-fragmentation equations, J. Differ. Equ., Volume 167 (2000), pp. 245–274 | DOI | MR | Zbl

[18] Laurençot, Ph.; Mischler, S. The continuous coagulation-fragmentation equations with diffusion, Arch. Ration. Mech. Anal., Volume 162 (2002), pp. 45–99 | MR | Zbl

[19] Laurençot, Ph.; Mischler, S. From the discrete to the continuous coagulation-fragmentation equations, Proc. R. Soc. Edinb. A, Volume 132 (2002), pp. 1219–1248 | DOI | MR | Zbl

[20] Laurençot, Ph.; Mischler, S. Convergence to equilibrium for the continuous coagulation-fragmentation equation, Bull. Sci. Math., Volume 127 (2003), pp. 179–190 | DOI | MR | Zbl

[21] Leyvraz, F. Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A, Volume 16 (1983), pp. 2861–2873 | DOI | MR

[22] Leyvraz, F.; Tschudi, H.R. Singularities in the kinetics of coagulation processes, J. Phys. A, Volume 14 (1981), pp. 3389–3405 | DOI | MR | Zbl

[23] McGrady, E.D.; Ziff, R.M. “Shattering” transition in fragmentation, Phys. Rev. Lett., Volume 58 (1987), pp. 892–895 | DOI | MR

[24] Mischler, S.; Rodriguez Ricard, M. Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions, C. R. Math. Acad. Sci. Paris, Volume 336 (2003), pp. 407–412 | DOI | MR | Zbl

[25] Niethammer, B.; Velázquez, J.J.L. Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels, Commun. Math. Phys., Volume 318 (2013), pp. 505–532 | MR | Zbl

[26] Stewart, I.W. A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., Volume 11 (1989), pp. 627–648 | DOI | MR | Zbl

[27] Vrabie, I.I. C0-Semigroups and Applications, North-Holland Mathematics Studies, vol. 191, North-Holland Publishing Co., Amsterdam, 2003 | MR | Zbl

[28] Walker, Ch. Coalescence and breakage processes, Math. Methods Appl. Sci., Volume 25 (2002), pp. 729–748 | DOI | MR | Zbl

Cité par Sources :