Homogenisation for the Stokes equations in randomly perforated domains under almost minimal assumptions on the size of the holes
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1829-1868.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We prove the homogenisation to the Brinkman equations for the incompressible Stokes equations in a bounded domain which is perforated by a random collection of small spherical holes. The fluid satisfies a no-slip boundary condition at the holes. The balls generating the holes have centres distributed according to a Poisson point process and i.i.d. unbounded radii satisfying a suitable moment condition. We stress that our assumption on the distribution of the radii does not exclude that, with overwhelming probability, the holes contain clusters made by many overlapping balls. We show that the formation of these clusters has no effect on the limit Brinkman equations. Due to the incompressibility condition and the lack of a maximum principle for the Stokes equations, our proof requires a very careful study of the geometry of the random holes generated by the class of probability measures considered.

DOI : 10.1016/j.anihpc.2019.06.002
Mots-clés : Random homogenisation, Stokes/Navier-Stokes equations, Brinkman equations
@article{AIHPC_2019__36_7_1829_0,
     author = {Giunti, Arianna and H\"ofer, Richard M.},
     title = {Homogenisation for the {Stokes} equations in randomly perforated domains under almost minimal assumptions on the size of the holes},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1829--1868},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.06.002},
     mrnumber = {4020526},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.06.002/}
}
TY  - JOUR
AU  - Giunti, Arianna
AU  - Höfer, Richard M.
TI  - Homogenisation for the Stokes equations in randomly perforated domains under almost minimal assumptions on the size of the holes
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1829
EP  - 1868
VL  - 36
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.06.002/
DO  - 10.1016/j.anihpc.2019.06.002
LA  - en
ID  - AIHPC_2019__36_7_1829_0
ER  - 
%0 Journal Article
%A Giunti, Arianna
%A Höfer, Richard M.
%T Homogenisation for the Stokes equations in randomly perforated domains under almost minimal assumptions on the size of the holes
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1829-1868
%V 36
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.06.002/
%R 10.1016/j.anihpc.2019.06.002
%G en
%F AIHPC_2019__36_7_1829_0
Giunti, Arianna; Höfer, Richard M. Homogenisation for the Stokes equations in randomly perforated domains under almost minimal assumptions on the size of the holes. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1829-1868. doi : 10.1016/j.anihpc.2019.06.002. http://www.numdam.org/articles/10.1016/j.anihpc.2019.06.002/

[1] Allaire, G. Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes, Arch. Ration. Mech. Anal., Volume 113 (1990) no. 3, pp. 209–259 MR 1079189 (91k:35031a) | MR | Zbl

[2] Brillard, A. Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods, Ann. Fac. Sci. Univ. Toulouse Sci. Math., Volume 8 (1986–1987) no. 2, pp. 225–252 (eng) | Numdam | MR | Zbl

[3] Brinkman, H.C. A calculation of the viscosity and the sedimentation constant for solutions of large chain molecules taking into account the hampered flow of the solvent through these molecules, Physica, Volume 13 (1947), pp. 447–448 | DOI

[4] Carrapatoso, K.; Hillairet, M. On the derivation of a Stokes-Brinkman problem from Stokes equations around a random array of moving spheres, 2018 (arXiv preprint) | arXiv | MR

[5] Cioranescu, D.; Murat, F. A strange term coming from nowhere, Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential Equations and Their Applications, vol. 31, 1997, pp. 45–93 | MR | Zbl

[6] Desvillettes, L.; Golse, F.; Ricci, V. The mean-field limit for solid particles in a Navier-Stokes flow, J. Stat. Phys., Volume 131 (2008) no. 5, pp. 941–967 | DOI | MR | Zbl

[7] Feireisl, E.; Namlyeyeva, Y.; Nečasová, Š. Homogenization of the evolutionary Navier-Stokes system, Manuscr. Math., Volume 149 (2016) no. 1–2, pp. 251–274 (MR 3447153) | MR

[8] Galdi, G.P. Linearized steady problems, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I, Springer Tracts in Natural Philosophy, vol. 38, Springer-Verlag, New York, 1994 MR 1284205 (95i:35216a) | MR | Zbl

[9] Galdi, G.P. Nonlinear steady problems, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II, Springer Tracts in Natural Philosophy, vol. 39, Springer-Verlag, New York, 1994 (MR 1284206) | MR | Zbl

[10] A. Giunti, R.M. Höfer, Homogenization for the Stokes equation in randomly perforated domains: convergence of the pressure terms, 2019, in preparation.

[11] Giunti, A.; Höfer, R.; Velazquez, J.J.L. Homogenization for the Poisson equation in randomly perforated domains under minimal assumptions on the size of the holes, Commun. Partial Differ. Equ., Volume 43 (2019) no. 9, pp. 1377–1412 | DOI | MR

[12] Hillairet, M. On the homogenization of the Stokes problem in a perforated domain, Arch. Ration. Mech. Anal., Volume 230 (2018) no. 3, pp. 1179–1228 | DOI | MR

[13] Hillairet, M.; Moussa, A.; Sueur, F. On the effect of polydispersity and rotation on the Brinkman force induced by a cloud of particles on a viscous incompressible flow, Kinet. Relat. Models, Volume 12 (2019) no. 4, pp. 681–701 | DOI | MR

[14] Höfer, R.M. Sedimentation of inertialess particles in Stokes flows, Commun. Math. Phys., Volume 360 (2018) no. 1, pp. 55–101 (MR 3795188) | DOI | MR

[15] Jabin, P.-E.; Otto, F. Identification of the dilute regime in particle sedimentation, Commun. Math. Phys., Volume 250 (2004) no. 2, pp. 415–432 (MR 2094523) | MR | Zbl

[16] Lévy, T. Fluid flow through an array of fixed particles, Int. J. Eng. Sci., Volume 21 (1983) no. 1, pp. 11–23 | DOI | MR | Zbl

[17] Marchenko, V.A.; Khruslov, E.Y. Boundary-value problems with fine-grained boundary, Mat. Sb., Volume 65 (1964) no. 107, pp. 458–472 | MR | Zbl

[18] Maremonti, P.; Russo, R.; Starita, G. Quad. Mat., vol. 4, Dept. Math., Seconda Univ. Napoli, Caserta (1999), pp. 69–140 (MR 1770189) | MR

[19] Mecherbet, A. Sedimentation of particles in Stokes flow, Kinet. Relat. Models, Volume 12 (2019) no. 5, pp. 995–1044 | DOI | MR

[20] Rubinstein, J. On the macroscopic description of slow viscous flow past a random array of spheres, J. Stat. Phys., Volume 44 (1986) no. 5–6, pp. 849–863 (MR 858259) | MR | Zbl

[21] Sanchez-Palencia, E. On the asymptotics of the fluid flow past an array of fixed obstacles, Int. J. Eng. Sci., Volume 20 (1982), pp. 1291–1301 | DOI | MR | Zbl

[22] Temam, R. Navier-Stokes Equations, AMS Chelsea Publishing, Providence, RI, 2001 (Theory and numerical analysis, Reprint of the 1984 edition, MR 1846644) | MR | Zbl

Cité par Sources :