The main result of this paper is a nonlocal version of Harnack's inequality for a class of parabolic nonlocal equations. We additionally establish a weak Harnack inequality as well as local boundedness of solutions. None of the results require the solution to be globally positive.
Mots-clés : Nonlocal parabolic equations, Harnack inequalities, Local boundedness
@article{AIHPC_2019__36_6_1709_0, author = {Str\"omqvist, Martin}, title = {Harnack's inequality for parabolic nonlocal equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1709--1745}, publisher = {Elsevier}, volume = {36}, number = {6}, year = {2019}, doi = {10.1016/j.anihpc.2019.03.003}, mrnumber = {4002171}, zbl = {1421.35190}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.03.003/} }
TY - JOUR AU - Strömqvist, Martin TI - Harnack's inequality for parabolic nonlocal equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 1709 EP - 1745 VL - 36 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.03.003/ DO - 10.1016/j.anihpc.2019.03.003 LA - en ID - AIHPC_2019__36_6_1709_0 ER -
%0 Journal Article %A Strömqvist, Martin %T Harnack's inequality for parabolic nonlocal equations %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 1709-1745 %V 36 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.03.003/ %R 10.1016/j.anihpc.2019.03.003 %G en %F AIHPC_2019__36_6_1709_0
Strömqvist, Martin. Harnack's inequality for parabolic nonlocal equations. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 6, pp. 1709-1745. doi : 10.1016/j.anihpc.2019.03.003. http://www.numdam.org/articles/10.1016/j.anihpc.2019.03.003/
[1] Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps, Math. Z., Volume 261 (2009) no. 2, pp. 297–320 | MR | Zbl
[2] Harnack's inequality for stable Lévy processes, Potential Anal., Volume 22 (2005) no. 2, pp. 133–150 | MR | Zbl
[3] Optimal existence and uniqueness theory for the fractional heat equation, Nonlinear Anal., Volume 153 (2017), pp. 142–168 | MR | Zbl
[4] Quantitative local and global a priori estimates for fractional nonlinear diffusion equations, Adv. Math., Volume 250 (2014), pp. 242–284 | MR | Zbl
[5] Regularity theory for parabolic nonlinear integral operators, J. Am. Math. Soc., Volume 24 (2011) no. 3, pp. 849–869 | MR | Zbl
[6] Nonlocal Harnack inequalities, J. Funct. Anal., Volume 267 (2014) no. 6, pp. 1807–1836 | MR | Zbl
[7] Local behavior of fractional -minimizers, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 5, pp. 1279–1299 | Numdam | MR | Zbl
[8] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521–573 | MR | Zbl
[9] Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[10] On weighted Poincaré inequalities, Ann. Acad. Sci. Fenn., Math., Volume 38 (2013) no. 2, pp. 721–726 | MR | Zbl
[11] Local regularity for parabolic nonlocal operators, Commun. Partial Differ. Equ., Volume 38 (2013) no. 9, pp. 1539–1573 | MR | Zbl
[12] Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, Providence, RI, 2011 | MR | Zbl
[13] Harnack inequalities and hölder regularity estimates for nonlocal operators revisited, 2011 https://sfb701.math.uni-bielefeld.de/files/preprints/sfb11015.pdf (SFB 701-preprint no. 11015, Available at)
[14] A new formulation of Harnack's inequality for nonlocal operators, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 11–12, pp. 637–640 | MR | Zbl
[15] Regularity results for nonlocal parabolic equations, Riv. Math. Univ. Parma (N. S.), Volume 5 (2014) no. 1, pp. 183–212 | MR | Zbl
[16] On a pointwise estimate for parabolic differential equations, Commun. Pure Appl. Math., Volume 24 (1971), pp. 727–740 | DOI | MR | Zbl
[17] Aspects of Sobolev-Type Inequalities, London Mathematical Society Lecture Note Series, vol. 289, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[18] Local boundedness of solutions to nonlocal equations modeled on the fractional p-laplacian (Preprint 2017) | arXiv | MR
Cité par Sources :