We extend the De Giorgi–Nash–Moser theory to nonlocal, possibly degenerate integro-differential operators.
Mots-clés : Quasilinear nonlocal operators, Fractional Sobolev spaces, Hölder regularity, Caccioppoli estimates, Singular perturbations
@article{AIHPC_2016__33_5_1279_0, author = {Di Castro, Agnese and Kuusi, Tuomo and Palatucci, Giampiero}, title = {Local behavior of fractional \protect\emph{p}-minimizers}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1279--1299}, publisher = {Elsevier}, volume = {33}, number = {5}, year = {2016}, doi = {10.1016/j.anihpc.2015.04.003}, zbl = {1355.35192}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.04.003/} }
TY - JOUR AU - Di Castro, Agnese AU - Kuusi, Tuomo AU - Palatucci, Giampiero TI - Local behavior of fractional p-minimizers JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1279 EP - 1299 VL - 33 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2015.04.003/ DO - 10.1016/j.anihpc.2015.04.003 LA - en ID - AIHPC_2016__33_5_1279_0 ER -
%0 Journal Article %A Di Castro, Agnese %A Kuusi, Tuomo %A Palatucci, Giampiero %T Local behavior of fractional p-minimizers %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1279-1299 %V 33 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2015.04.003/ %R 10.1016/j.anihpc.2015.04.003 %G en %F AIHPC_2016__33_5_1279_0
Di Castro, Agnese; Kuusi, Tuomo; Palatucci, Giampiero. Local behavior of fractional p-minimizers. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 5, pp. 1279-1299. doi : 10.1016/j.anihpc.2015.04.003. http://www.numdam.org/articles/10.1016/j.anihpc.2015.04.003/
[1] Non-local gradient dependent operators, Adv. Math., Volume 230 (2012), pp. 1859–1894 | DOI | Zbl
[2] The second eigenvalue of the fractional p-Laplacian, 2015 http://cvgmt.sns.it/paper/2522/ (preprint, available at)
[3] A Hölder infinity Laplacian, ESAIM Control Optim. Calc. Var., Volume 18 (2012), pp. 799–835 | DOI | Numdam | Zbl
[4] An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 1245–1260 | DOI | Zbl
[5] 3-commutators estimates and the regularity of 1/2-harmonic maps into spheres, Anal. PDE, Volume 4 (2011), pp. 149–190 | Zbl
[6] Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat., Volume 3 (1957), pp. 25–43 | Zbl
[7] Nonlocal Harnack inequalities, J. Funct. Anal., Volume 267 (2014), pp. 1807–1836 | DOI | Zbl
[8] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012), pp. 521–573 | DOI | Zbl
[9] Fractional p-eigenvalues, Riv. Mat. Univ. Parma, Volume 5 (2014) no. 2, pp. 315–328 | Zbl
[10] Analysis of symmetric Markov processes. A localization technique for non-local operators, Universität Bonn, 2007 (Habilitation thesis)
[11] The classical Harnack inequality fails for nonlocal operators, 2007 http://sfb611.iam.uni-bonn.de/publications.php?lang=de&pro=&order=number&page=15&pub=371 (SFB 611-preprint 360, available at)
[12] A priori estimates for integro-differential operators with measurable kernels, Calc. Var. Partial Differ. Equ., Volume 34 (2009), pp. 1–21 | DOI | Zbl
[13] Harnack inequalities and Hölder regularity estimates for nonlocal operators revisited, 2011 http://www.math.uni-bielefeld.de/sfb701/preprints/view/523 (preprint, available at)
[14] Nonlocal equations with measure data, Commun. Math. Phys., Volume 337 (2015) no. 3, pp. 1317–1368 | DOI | Zbl
[15] Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var. (2015) (in press) | DOI
[16] A class of integral equations and approximation of p-Laplace equations, Calc. Var. Partial Differ. Equ., Volume 37 (2010), pp. 485–522 | DOI | Zbl
[17] Hölder estimates for viscosity solutions of equations of fractional p-Laplace type, 2014 (preprint, available at) | arXiv
[18] Fractional eigenvalues, Calc. Var. Partial Differ. Equ., Volume 49 (2014) no. 1–2, pp. 795–826 | Zbl
[19] Fine Regularity of Solutions of Elliptic Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1997 | DOI | Zbl
[20] Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var. Partial Differ. Equ., Volume 18 (2003) no. 4, pp. 373–400 | DOI | Zbl
[21] The Calderón–Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 6 (2007), pp. 195–261 | Numdam | Zbl
[22] Gradient potential estimates, J. Eur. Math. Soc., Volume 13 (2011), pp. 459–486 | Zbl
[23] On Harnack's theorem for elliptic differential equations, Commun. Pure Appl. Math., Volume 14 (1961), pp. 577–591 | DOI | Zbl
[24] Continuity of solutions of parabolic and elliptic equations, Am. J. Math., Volume 80 (1958), pp. 931–954 | DOI | Zbl
[25] Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differ. Equ., Volume 50 (2014) no. 3–4, pp. 799–829 | Zbl
[26] Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl. (4), Volume 192 (2013) no. 4, pp. 673–718 | DOI | Zbl
[27] G. Palatucci, A. Pisante, Y. Sire, Subcritical approximation of a Yamabe type non local equation: a Gamma-convergence approach, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), | DOI
[28] Density estimates for a nonlocal variational model via the Sobolev inequality, SIAM J. Math. Anal., Volume 43 (2011) no. 6, pp. 2675–2687 | DOI | Zbl
[29] Density estimates for a variational model driven by the Gagliardo norm, J. Math. Pures Appl., Volume 101 (2014) no. 1, pp. 1–26 | DOI | Zbl
[30] Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., Volume 58 (2014) no. 1, pp. 133–154 | Zbl
[31] Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J., Volume 55 (2006) no. 3, pp. 1155–1174 | DOI | Zbl
Cité par Sources :