Blowup criterion for Navier–Stokes equation in critical Besov space with spatial dimensions d ≥ 4
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 6, pp. 1679-1707.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

This paper is concerned with the blowup criterion for mild solution to the incompressible Navier–Stokes equation in higher spatial dimensions d4. By establishing an ϵ regularity criterion in the spirit of [11], we show that if the mild solution u with initial data in B˙p,q1+d/p(Rd), d<p,q< becomes singular at a finite time T, then

limsuptTu(t)B˙p,q1+d/p(Rd)=.
The corresponding result in 3D case has been obtained in [24]. As a by-product, we also prove a regularity criterion for the Leray–Hopf solution in the critical Besov space, which generalizes the results in [17], where blowup criterion in critical Lebesgue space Ld(Rd) is addressed.

DOI : 10.1016/j.anihpc.2019.02.003
Mots-clés : Navier–Stokes equation, Blowup criterion, Critical Besov spaces, Higher spatial dimensions
@article{AIHPC_2019__36_6_1679_0,
     author = {Li, Kuijie and Wang, Baoxiang},
     title = {Blowup criterion for {Navier{\textendash}Stokes} equation in critical {Besov} space with spatial dimensions \protect\emph{d} \ensuremath{\geq} 4},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1679--1707},
     publisher = {Elsevier},
     volume = {36},
     number = {6},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.02.003},
     mrnumber = {4002170},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.02.003/}
}
TY  - JOUR
AU  - Li, Kuijie
AU  - Wang, Baoxiang
TI  - Blowup criterion for Navier–Stokes equation in critical Besov space with spatial dimensions d ≥ 4
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1679
EP  - 1707
VL  - 36
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.02.003/
DO  - 10.1016/j.anihpc.2019.02.003
LA  - en
ID  - AIHPC_2019__36_6_1679_0
ER  - 
%0 Journal Article
%A Li, Kuijie
%A Wang, Baoxiang
%T Blowup criterion for Navier–Stokes equation in critical Besov space with spatial dimensions d ≥ 4
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1679-1707
%V 36
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.02.003/
%R 10.1016/j.anihpc.2019.02.003
%G en
%F AIHPC_2019__36_6_1679_0
Li, Kuijie; Wang, Baoxiang. Blowup criterion for Navier–Stokes equation in critical Besov space with spatial dimensions d ≥ 4. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 6, pp. 1679-1707. doi : 10.1016/j.anihpc.2019.02.003. http://www.numdam.org/articles/10.1016/j.anihpc.2019.02.003/

[1] Albritton, D. Blow-up criteria for the Navier–Stokes equations in non-endpoint critical Besov spaces, Anal. PDE, Volume 11 (2018) no. 6, pp. 1415–1456 | DOI | MR

[2] Albritton, D.; Barker, T. Global weak Besov solutions of the Navier–Stokes equations and applications, Arch. Ration. Mech. Anal., Volume 232 (2019) no. 1, pp. 197–263 | DOI | MR

[3] Bae, H.; Biswas, A.; Tadmor, E. Analyticity and decay estimates of the Navier–Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., Volume 205 (2012), pp. 963–991 | MR | Zbl

[4] Bahouri, H.; Chemin, J.-Y.; Danchin, R. Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[5] Barker, T. Uniqueness results for weak Leray–Hopf solutions of the Navier–Stokes system with initial values in critical spaces, J. Math. Fluid Mech., Volume 20 (2018) no. 1, pp. 133–160 | DOI | MR

[6] Barker, T.; Seregin, G. A necessary condition of potential blowup for the Navier–Stokes system in half-space, Math. Ann., Volume 369 (2017) no. 3–4, pp. 1327–1352 | MR

[7] Barker, T. Existence and weak* stability for the Navier–Stokes system with initial values in critical Besov spaces, March 2017 | arXiv

[8] Bergh, J.; Löfström, J. Interpolation Spaces, Springer-Verlag, 1976 | DOI | MR | Zbl

[9] Bourgain, J.; Pavlovic, N. Ill-posedness of the Navier–Stokes equations in a critical space in 3D, J. Funct. Anal., Volume 255 (2008), pp. 2233–2247 | DOI | MR | Zbl

[10] Buckmaster, T.; Vicol, V. Nonuniqueness of weak solutions to the Navier–Stokes equation, Ann. of Math., Volume 189 (2019) no. 1, pp. 101–144 | DOI | MR

[11] Caffarelli, L.; Kohn, R.; Nirenberg, L. Partial regularity of suitable weak solutions of the Navier–Stokes equations, Commun. Pure Appl. Math., Volume 35 (1982), pp. 771–831 | DOI | MR | Zbl

[12] Calderón, C.P. Existence of weak solutions for the Navier–Stokes equations with initial data in Lp , Trans. Am. Math. Soc., Volume 318 (1990) no. 1, pp. 179–200 | MR | Zbl

[13] Cannone, M.; Meyer, Y. Littlewood–Paley decomposition and Navier–Stokes equations, Methods Appl. Anal., Volume 2 (1995), pp. 307–319 | DOI | MR | Zbl

[14] Cannone, M. A generalization of a theorem by Kato on Navier–Stokes equations, Rev. Mat. Iberoam., Volume 13 (1997), pp. 515–541 | DOI | MR | Zbl

[15] Chemin, J.-Y. Uniqueness theorems for the three-dimensional Navier–Stokes system, J. Anal. Math., Volume 77 (1999), pp. 27–50 (in French) | MR | Zbl

[16] Cheskidov, A.; Shvydkoy, R. The regularity of weak solutions of the 3D Navier–Stokes equations in B,1 , Arch. Ration. Mech. Anal., Volume 195 (2010) no. 1, pp. 159–169 | DOI | MR | Zbl

[17] Dong, H.; Du, D. The Navier–Stokes equation in the critical Lebesgue space, Commun. Math. Phys., Volume 292 (2009), pp. 811–827 | DOI | MR | Zbl

[18] Dong, H.; Du, D. Partial regularity of solutions to the four-dimensional Navier–Stokes equations at the first blow-up time, Commun. Math. Phys., Volume 273 (2007), pp. 785–801 | DOI | MR | Zbl

[19] Dong, H.; Gu, X. Partial regularity of solutions to the four-dimensional Navier–Stokes equations, Dyn. Partial Differ. Equ., Volume 11 (2014), pp. 53–69 | DOI | MR | Zbl

[20] Escauriaza, L.; Seregin, G.; Sverak, V. L3, solutions of Navier–Stokes equations and backward uniqueness, Usp. Mat. Nauk, Volume 58 (2003), pp. 3–44 | MR | Zbl

[21] Furioli, G.; Lemarié-Rieusset, P.G.; Zahrouni, E.; Zhioua, A. Un théorème de persistance de la régularité en norme d'espaces de Besov pour les solutions de Koch et Tataru des équations de Navier–Stokes dans R3 , C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000), pp. 339–342 | DOI | MR | Zbl

[22] Gallagher, I.; Iftimie, D.; Planchon, F. Asymptotics and stability for global solutions to the Navier–Stokes equations, Ann. Inst. Fourier (Grenoble), Volume 53 (2003) no. 5, pp. 1387–1424 | DOI | Numdam | MR | Zbl

[23] Gallagher, I.; Koch, G.S.; Planchnon, F. A profile decomposition approach to the Lt(Lx3) Navier–Stokes regularity criterion, Math. Ann., Volume 355 (2013), pp. 1527–1559 | DOI | MR | Zbl

[24] Gallagher, I.; Koch, G.S.; Planchon, F. Blow-up of critical Besov norms at a potential Navier–Stokes singularity, Commun. Math. Phys., Volume 343 (2016) no. 1, pp. 39–82 | DOI | MR

[25] Germain, P. The second iterate for the Navier–Stokes equation, J. Funct. Anal., Volume 255 (2008), pp. 2248–2264 | DOI | MR | Zbl

[26] Giga, Y. Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system, J. Differ. Equ., Volume 62 (1986), pp. 182–212 | DOI | MR | Zbl

[27] Giga, Y.; Miyakawa, T. Solutions in L r of the Navier–Stokes initial value problem, Arch. Ration. Mech. Anal., Volume 89 (1985), pp. 267–281 | DOI | MR | Zbl

[28] Giga, Y.; Miyakawa, T. Navier–Stokes flow in R3 with measures as initial vorticity and Morrey spaces, Commun. Partial Differ. Equ., Volume 14 (1989), pp. 577–618 | DOI | MR | Zbl

[29] Hopf, E. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., Volume 4 (1951), pp. 213–231 | MR | Zbl

[30] Kato, T.; Fujita, H. On the nonstationary Navier–Stokes system, Rend. Semin. Mat. Univ. Padova, Volume 32 (1962), pp. 243–260 | Numdam | MR | Zbl

[31] Kato, T. Strong Lp solutions of the Navier–Stokes equations in Rm, with applications to weak solutions, Math. Z., Volume 187 (1984), pp. 471–480 | DOI | MR | Zbl

[32] Kenig, C.E.; Koch, G.S. An alternative approach to regularity for the Navier–Stokes equations in critical spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011), pp. 159–187 | DOI | Numdam | MR | Zbl

[33] Koch, H.; Tataru, D. Well-posedness for the Navier–Stokes equations, Adv. Math., Volume 157 (2001), pp. 22–35 | DOI | MR | Zbl

[34] Kozono, H.; Ogawa, T.; Taniuchi, Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., Volume 242 (2002), pp. 251–278 | DOI | MR | Zbl

[35] Ladyzhenskaya, O.A.; Seregin, G.A. On partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier–Stokes equations, J. Math. Fluid Mech., Volume 1 (1999), pp. 356–387 | DOI | MR | Zbl

[36] Leray, J. Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193–248 | DOI | JFM | MR

[37] Lemarié-Rieusset, P.G. Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002 | MR | Zbl

[38] Lin, F.H. A new proof of the Caffarelli–Kohn–Nirenberg theorem, Commun. Pure Appl. Math., Volume 51 (1998), pp. 241–257 | MR | Zbl

[39] Planchon, F. Asymptotic behavior of global solutions to the Navier–Stokes equations in R3 , Rev. Mat. Iberoam., Volume 14 (1998) no. 1, pp. 71–93 | DOI | MR | Zbl

[40] Phuc, N.C. The Navier–Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech., Volume 17 (2015) no. 4, pp. 741–760 | MR

[41] Scheffer, V. Partial regularity of solutions to the Navier–Stokes equations, Pac. J. Math., Volume 66 (1976) no. 2, pp. 522–532 | DOI | MR | Zbl

[42] Scheffer, V. Hausdorff measure and the Navier–Stokes equations, Commun. Math. Phys., Volume 55 (1977) no. 2, pp. 97–112 | DOI | MR | Zbl

[43] Scheffer, V. The Navier–Stokes equations in space dimension four, Commun. Math. Phys., Volume 61 (1978) no. 1, pp. 41–68 | DOI | MR | Zbl

[44] Seregin, G. A certain necessary condition of potential blow up for Navier–Stokes equations, Commun. Math. Phys., Volume 312 (2012), pp. 833–845 | DOI | MR | Zbl

[45] Seregin, G. Lecture Notes on Regularity Theory for the Navier–Stokes Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015 | MR | Zbl

[46] Simon, J. Compact sets in the space Lp(0,T;B) , Ann. Mat. Pura Appl. (4), Volume 146 (1987), pp. 65–96 | MR | Zbl

[47] Taylor, M. Analysis on Morrey spaces and applications to Navier–Stokes equation, Commun. Partial Differ. Equ., Volume 17 (1992), pp. 1407–1456 | DOI | MR | Zbl

[48] Triebel, H. Theory of Function Spaces, Birkhäuser-Verlag, 1983 | DOI | MR

[49] Vasseur, A. A new proof of partial regularity of solutions to Navier–Stokes equations, Nonlinear Differ. Equ. Appl., Volume 14 (2007), pp. 753–785 | DOI | MR | Zbl

[50] Wang, B.; Huo, Z.; Hao, C.; Guo, Z. Harmonic Analysis Method for Nonlinear Evolution Equations. I, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011 | DOI | MR | Zbl

[51] Wang, B.; Zhao, L.; Guo, B. Isometric decomposition operators, function spaces Ep,qλ and their applications to nonlinear evolution equations, J. Funct. Anal., Volume 233 (2006), pp. 1–39 | MR | Zbl

[52] Wang, B. Ill-posedness for the Navier–Stokes equation in critical Besov spaces B˙,q1 , Adv. Math., Volume 268 (2015), pp. 350–372 | DOI | MR | Zbl

[53] Wang, Y.; Wu, G. A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier–Stokes equations, J. Differ. Equ., Volume 256 (2014), pp. 1224–1249 | DOI | MR | Zbl

[54] Weissler, F.B. The Navier–Stokes initial value problem in Lp , Arch. Ration. Mech. Anal., Volume 74 (1980), pp. 219–230 | DOI | MR | Zbl

[55] Yoneda, T. Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near BMO1 , J. Funct. Anal., Volume 258 (2010), pp. 3376–3387 | DOI | MR | Zbl

Cité par Sources :