This paper is concerned with the blowup criterion for mild solution to the incompressible Navier–Stokes equation in higher spatial dimensions . By establishing an ϵ regularity criterion in the spirit of [11], we show that if the mild solution u with initial data in , becomes singular at a finite time , then
@article{AIHPC_2019__36_6_1679_0, author = {Li, Kuijie and Wang, Baoxiang}, title = {Blowup criterion for {Navier{\textendash}Stokes} equation in critical {Besov} space with spatial dimensions \protect\emph{d} \ensuremath{\geq} 4}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1679--1707}, publisher = {Elsevier}, volume = {36}, number = {6}, year = {2019}, doi = {10.1016/j.anihpc.2019.02.003}, mrnumber = {4002170}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.02.003/} }
TY - JOUR AU - Li, Kuijie AU - Wang, Baoxiang TI - Blowup criterion for Navier–Stokes equation in critical Besov space with spatial dimensions d ≥ 4 JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 1679 EP - 1707 VL - 36 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.02.003/ DO - 10.1016/j.anihpc.2019.02.003 LA - en ID - AIHPC_2019__36_6_1679_0 ER -
%0 Journal Article %A Li, Kuijie %A Wang, Baoxiang %T Blowup criterion for Navier–Stokes equation in critical Besov space with spatial dimensions d ≥ 4 %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 1679-1707 %V 36 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.02.003/ %R 10.1016/j.anihpc.2019.02.003 %G en %F AIHPC_2019__36_6_1679_0
Li, Kuijie; Wang, Baoxiang. Blowup criterion for Navier–Stokes equation in critical Besov space with spatial dimensions d ≥ 4. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 6, pp. 1679-1707. doi : 10.1016/j.anihpc.2019.02.003. http://www.numdam.org/articles/10.1016/j.anihpc.2019.02.003/
[1] Blow-up criteria for the Navier–Stokes equations in non-endpoint critical Besov spaces, Anal. PDE, Volume 11 (2018) no. 6, pp. 1415–1456 | DOI | MR
[2] Global weak Besov solutions of the Navier–Stokes equations and applications, Arch. Ration. Mech. Anal., Volume 232 (2019) no. 1, pp. 197–263 | DOI | MR
[3] Analyticity and decay estimates of the Navier–Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., Volume 205 (2012), pp. 963–991 | MR | Zbl
[4] Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343, Springer, Heidelberg, 2011 | DOI | MR | Zbl
[5] Uniqueness results for weak Leray–Hopf solutions of the Navier–Stokes system with initial values in critical spaces, J. Math. Fluid Mech., Volume 20 (2018) no. 1, pp. 133–160 | DOI | MR
[6] A necessary condition of potential blowup for the Navier–Stokes system in half-space, Math. Ann., Volume 369 (2017) no. 3–4, pp. 1327–1352 | MR
[7] Existence and weak* stability for the Navier–Stokes system with initial values in critical Besov spaces, March 2017 | arXiv
[8] Interpolation Spaces, Springer-Verlag, 1976 | DOI | MR | Zbl
[9] Ill-posedness of the Navier–Stokes equations in a critical space in 3D, J. Funct. Anal., Volume 255 (2008), pp. 2233–2247 | DOI | MR | Zbl
[10] Nonuniqueness of weak solutions to the Navier–Stokes equation, Ann. of Math., Volume 189 (2019) no. 1, pp. 101–144 | DOI | MR
[11] Partial regularity of suitable weak solutions of the Navier–Stokes equations, Commun. Pure Appl. Math., Volume 35 (1982), pp. 771–831 | DOI | MR | Zbl
[12] Existence of weak solutions for the Navier–Stokes equations with initial data in , Trans. Am. Math. Soc., Volume 318 (1990) no. 1, pp. 179–200 | MR | Zbl
[13] Littlewood–Paley decomposition and Navier–Stokes equations, Methods Appl. Anal., Volume 2 (1995), pp. 307–319 | DOI | MR | Zbl
[14] A generalization of a theorem by Kato on Navier–Stokes equations, Rev. Mat. Iberoam., Volume 13 (1997), pp. 515–541 | DOI | MR | Zbl
[15] Uniqueness theorems for the three-dimensional Navier–Stokes system, J. Anal. Math., Volume 77 (1999), pp. 27–50 (in French) | MR | Zbl
[16] The regularity of weak solutions of the 3D Navier–Stokes equations in , Arch. Ration. Mech. Anal., Volume 195 (2010) no. 1, pp. 159–169 | DOI | MR | Zbl
[17] The Navier–Stokes equation in the critical Lebesgue space, Commun. Math. Phys., Volume 292 (2009), pp. 811–827 | DOI | MR | Zbl
[18] Partial regularity of solutions to the four-dimensional Navier–Stokes equations at the first blow-up time, Commun. Math. Phys., Volume 273 (2007), pp. 785–801 | DOI | MR | Zbl
[19] Partial regularity of solutions to the four-dimensional Navier–Stokes equations, Dyn. Partial Differ. Equ., Volume 11 (2014), pp. 53–69 | DOI | MR | Zbl
[20] solutions of Navier–Stokes equations and backward uniqueness, Usp. Mat. Nauk, Volume 58 (2003), pp. 3–44 | MR | Zbl
[21] Un théorème de persistance de la régularité en norme d'espaces de Besov pour les solutions de Koch et Tataru des équations de Navier–Stokes dans , C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000), pp. 339–342 | DOI | MR | Zbl
[22] Asymptotics and stability for global solutions to the Navier–Stokes equations, Ann. Inst. Fourier (Grenoble), Volume 53 (2003) no. 5, pp. 1387–1424 | DOI | Numdam | MR | Zbl
[23] A profile decomposition approach to the Navier–Stokes regularity criterion, Math. Ann., Volume 355 (2013), pp. 1527–1559 | DOI | MR | Zbl
[24] Blow-up of critical Besov norms at a potential Navier–Stokes singularity, Commun. Math. Phys., Volume 343 (2016) no. 1, pp. 39–82 | DOI | MR
[25] The second iterate for the Navier–Stokes equation, J. Funct. Anal., Volume 255 (2008), pp. 2248–2264 | DOI | MR | Zbl
[26] Solutions for semilinear parabolic equations in and regularity of weak solutions of the Navier–Stokes system, J. Differ. Equ., Volume 62 (1986), pp. 182–212 | DOI | MR | Zbl
[27] Solutions in of the Navier–Stokes initial value problem, Arch. Ration. Mech. Anal., Volume 89 (1985), pp. 267–281 | DOI | MR | Zbl
[28] Navier–Stokes flow in with measures as initial vorticity and Morrey spaces, Commun. Partial Differ. Equ., Volume 14 (1989), pp. 577–618 | DOI | MR | Zbl
[29] Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., Volume 4 (1951), pp. 213–231 | MR | Zbl
[30] On the nonstationary Navier–Stokes system, Rend. Semin. Mat. Univ. Padova, Volume 32 (1962), pp. 243–260 | Numdam | MR | Zbl
[31] Strong solutions of the Navier–Stokes equations in , with applications to weak solutions, Math. Z., Volume 187 (1984), pp. 471–480 | DOI | MR | Zbl
[32] An alternative approach to regularity for the Navier–Stokes equations in critical spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011), pp. 159–187 | DOI | Numdam | MR | Zbl
[33] Well-posedness for the Navier–Stokes equations, Adv. Math., Volume 157 (2001), pp. 22–35 | DOI | MR | Zbl
[34] The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., Volume 242 (2002), pp. 251–278 | DOI | MR | Zbl
[35] On partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier–Stokes equations, J. Math. Fluid Mech., Volume 1 (1999), pp. 356–387 | DOI | MR | Zbl
[36] Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193–248 | DOI | JFM | MR
[37] Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002 | MR | Zbl
[38] A new proof of the Caffarelli–Kohn–Nirenberg theorem, Commun. Pure Appl. Math., Volume 51 (1998), pp. 241–257 | MR | Zbl
[39] Asymptotic behavior of global solutions to the Navier–Stokes equations in , Rev. Mat. Iberoam., Volume 14 (1998) no. 1, pp. 71–93 | DOI | MR | Zbl
[40] The Navier–Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech., Volume 17 (2015) no. 4, pp. 741–760 | MR
[41] Partial regularity of solutions to the Navier–Stokes equations, Pac. J. Math., Volume 66 (1976) no. 2, pp. 522–532 | DOI | MR | Zbl
[42] Hausdorff measure and the Navier–Stokes equations, Commun. Math. Phys., Volume 55 (1977) no. 2, pp. 97–112 | DOI | MR | Zbl
[43] The Navier–Stokes equations in space dimension four, Commun. Math. Phys., Volume 61 (1978) no. 1, pp. 41–68 | DOI | MR | Zbl
[44] A certain necessary condition of potential blow up for Navier–Stokes equations, Commun. Math. Phys., Volume 312 (2012), pp. 833–845 | DOI | MR | Zbl
[45] Lecture Notes on Regularity Theory for the Navier–Stokes Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015 | MR | Zbl
[46] Compact sets in the space , Ann. Mat. Pura Appl. (4), Volume 146 (1987), pp. 65–96 | MR | Zbl
[47] Analysis on Morrey spaces and applications to Navier–Stokes equation, Commun. Partial Differ. Equ., Volume 17 (1992), pp. 1407–1456 | DOI | MR | Zbl
[48] Theory of Function Spaces, Birkhäuser-Verlag, 1983 | DOI | MR
[49] A new proof of partial regularity of solutions to Navier–Stokes equations, Nonlinear Differ. Equ. Appl., Volume 14 (2007), pp. 753–785 | DOI | MR | Zbl
[50] Harmonic Analysis Method for Nonlinear Evolution Equations. I, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011 | DOI | MR | Zbl
[51] Isometric decomposition operators, function spaces and their applications to nonlinear evolution equations, J. Funct. Anal., Volume 233 (2006), pp. 1–39 | MR | Zbl
[52] Ill-posedness for the Navier–Stokes equation in critical Besov spaces , Adv. Math., Volume 268 (2015), pp. 350–372 | DOI | MR | Zbl
[53] A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier–Stokes equations, J. Differ. Equ., Volume 256 (2014), pp. 1224–1249 | DOI | MR | Zbl
[54] The Navier–Stokes initial value problem in , Arch. Ration. Mech. Anal., Volume 74 (1980), pp. 219–230 | DOI | MR | Zbl
[55] Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near , J. Funct. Anal., Volume 258 (2010), pp. 3376–3387 | DOI | MR | Zbl
Cité par Sources :