Multiple solutions for the non-Abelian Chern–Simons–Higgs vortex equations
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1401-1430.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper we study the existence of multiple solutions for the non-Abelian Chern–Simons–Higgs (N×N)-system:

Δui=λ(j=1Nk=1NKkjKjieujeukj=1NKjieuj)+4πj=1niδpij,i=1,,N;
over a doubly periodic domain Ω, with coupling matrix K given by the Cartan matrix of SU(N+1), (see (1.2) below). Here, λ>0 is the coupling parameter, δp is the Dirac measure with pole at p and niN, for i=1,,N. When N=1,2 many results are now available for the periodic solvability of such system and provide the existence of different classes of solutions known as: topological, non-topological, mixed and blow-up type. On the contrary for N3, only recently in [27] the authors managed to obtain the existence of one doubly periodic solution via a minimization procedure, in the spirit of [46]. Our main contribution in this paper is to show (as in [46]) that actually the given system admits a second doubly periodic solutions of “Mountain-pass” type, provided that 3N5. Note that the existence of multiple solutions is relevant from the physical point of view. Indeed, it implies the co-existence of different non-Abelian Chern–Simons condensates sharing the same set (assigned component-wise) of vortex points, energy and fluxes. The main difficulty to overcome is to attain a “compactness” property encompassed by the so-called Palais–Smale condition for the corresponding “action” functional, whose validity remains still open for N6.

DOI : 10.1016/j.anihpc.2019.01.002
Mots-clés : Chern–Simons–Higgs equations, Doubly periodic solutions, Mountain-pass solution
Han, Xiaosen 1 ; Tarantello, Gabriella 2

1 Institute of Contemporary Mathematics, School of Mathematics and Statistics, Henan University, Kaifeng 475004, PR China
2 Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
@article{AIHPC_2019__36_5_1401_0,
     author = {Han, Xiaosen and Tarantello, Gabriella},
     title = {Multiple solutions for the {non-Abelian} {Chern{\textendash}Simons{\textendash}Higgs} vortex equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1401--1430},
     publisher = {Elsevier},
     volume = {36},
     number = {5},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.01.002},
     mrnumber = {3985548},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.002/}
}
TY  - JOUR
AU  - Han, Xiaosen
AU  - Tarantello, Gabriella
TI  - Multiple solutions for the non-Abelian Chern–Simons–Higgs vortex equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1401
EP  - 1430
VL  - 36
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.002/
DO  - 10.1016/j.anihpc.2019.01.002
LA  - en
ID  - AIHPC_2019__36_5_1401_0
ER  - 
%0 Journal Article
%A Han, Xiaosen
%A Tarantello, Gabriella
%T Multiple solutions for the non-Abelian Chern–Simons–Higgs vortex equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1401-1430
%V 36
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.002/
%R 10.1016/j.anihpc.2019.01.002
%G en
%F AIHPC_2019__36_5_1401_0
Han, Xiaosen; Tarantello, Gabriella. Multiple solutions for the non-Abelian Chern–Simons–Higgs vortex equations. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1401-1430. doi : 10.1016/j.anihpc.2019.01.002. http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.002/

[1] Ambrosetti, A.; Rabinowitz, P. Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349–381 | DOI | MR | Zbl

[2] Ao, W.; Lin, C.-S.; Wei, J. On non-topological solutions of the A2 and B2 Chern–Simons system, Mem. Am. Math. Soc., Volume 239 (2016), pp. 1132 | MR

[3] Ao, W.; Lin, C.-S.; Wei, J.C. On non-topological solutions of the G2 Chern–Simons system, Commun. Anal. Geom., Volume 24 (2016), pp. 717–752 | MR

[4] Atiyah, M.F. Topological quantum field theory, Publ. Math. Inst. Hautes Etudes Sci. Paris, Volume 68 (1989), pp. 175–186 | Numdam | MR | Zbl

[5] Aubin, T. Nonlinear Analysis on Manifolds: Monge–Ampére Equations, Springer, Berlin, New York, 1982 | MR | Zbl

[6] Bazeia, D.; da Hora, E.; dos Santos, C.; Menezes, R. Generalized self-dual Chern–Simons vortices, Phys. Rev. D, Volume 81 (2010) | DOI

[7] Bezryadina, A.; Eugenieva, E.; Chen, Z. Self-trapping and flipping of double-charged vortices in optically induced photonic lattices, Opt. Lett., Volume 31 (2006), pp. 2456–2458 | DOI

[8] Bogomol'nyi, E.B. The stability of classical solutions, Sov. J. Nucl. Phys., Volume 24 (1976), pp. 449–454

[9] Burzlaff, J.; Chakrabarti, A.; Tchrakian, D.H. Generalized self-dual Chern–Simons vortices, Phys. Lett. B, Volume 293 (1992), pp. 127–131 | DOI | MR

[10] Caffarelli, L.A.; Yang, Y. Vortex condensation in the Chern–Simons Higgs model: an existence theorem, Commun. Math. Phys., Volume 168 (1995), pp. 321–336 | DOI | MR | Zbl

[11] Chae, D.; Imanuvilov, O.Y. The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory, Commun. Math. Phys., Volume 215 (2000), pp. 119–142 | DOI | MR | Zbl

[12] Chern, S.S.; Simons, J. Some cohomology classes in principal fiber bundles and their application to Riemannian geometry, Proc. Natl. Acad. Sci. USA, Volume 68 (1971), pp. 791–794 | DOI | MR | Zbl

[13] Chern, S.S.; Simons, J. Characteristic forms and geometric invariants, Ann. Math., Volume 99 (1974), pp. 48–69 | DOI | MR | Zbl

[14] Choe, K.; Kim, N.; Lin, C.-S. Self-dual symmetric non-topological solutions in the SU(3) model in R2 , Commun. Math. Phys., Volume 334 (2015), pp. 1–37 | DOI | MR | Zbl

[15] Choe, K.; Kim, N.; Lin, C.-S. Existence of mixed type solutions in the SU(3) Chern–Simons theory in R2 , Calc. Var. Partial Differ. Equ., Volume 56 (2017) | DOI | MR

[16] Choe, K.; Kim, N.; Lee, Y.; Lin, C.-S. Existence of mixed type solutions in the Chern–Simons gauge theory of rank two in R2 , J. Funct. Anal., Volume 273 (2017), pp. 1734–1761 | DOI | MR

[17] Choe, K.; Kim, N.; Lee, Y.; Lin, C.-S. New type of non-topological bubbling solutions in the SU(3) Chern–Simons model in R2 , J. Funct. Anal., Volume 270 (2016), pp. 1–33 | DOI | MR

[18] Cugliandolo, L.F.; Lozano, G.; Manias, M.V.; Schaposnik, F.A. Bogomolny equations for non-Abelian Chern–Simons Higgs theories, Mod. Phys. Lett. A, Volume 6 (1991), pp. 479 | DOI | MR | Zbl

[19] Dasgupta, K.; Errasti Díez, V.; Ramadevi, P.; Tatar, R. Knot invariants and M-theory: Hitchin equations, Chern–Simons actions, and surface operators, Phys. Rev. D, Volume 95 (2017) | DOI | MR

[20] Dunne, G. Self-Dual Chern–Simons Theories, Lecture Notes in Physics, vol. 36, Springer, Berlin, 1995 | DOI | Zbl

[21] Dunne, G. Mass degeneracies in self-dual models, Phys. Lett. B, Volume 345 (1995), pp. 452–457 | DOI | MR

[22] Dunne, G.; Jackiw, R.; Pi, S.-Y.; Trugenberger, C. Self-dual Chern–Simons solitons and two-dimensional nonlinear equations, Phys. Rev. D, Volume 43 (1991), pp. 1332–1345 | MR

[23] Ghosh, P.K. Bogomol'nyi equations of Maxwell–Chern–Simons vortices from a generalized Abelian Higgs model, Phys. Rev. D, Volume 49 (1993), pp. 5458–5468

[24] Ghoussoub, N. Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press, Cambridge, 1993 | DOI | MR | Zbl

[25] Han, X.; Lin, C.-S.; Yang, Y. Resolution of Chern–Simons–Higgs vortex equations, Commun. Math. Phys., Volume 343 (2016), pp. 701–724 | MR

[26] Han, X.; Tarantello, G. Doubly periodic self-dual vortices in a relativistic non-Abelian Chern–Simons model, Calc. Var. Partial Differ. Equ., Volume 49 (2014), pp. 1149–1176 | MR | Zbl

[27] Han, X.; Yang, Y. Relativistic Chern–Simons–Higgs vortex equations, Trans. Am. Math. Soc., Volume 368 (2016), pp. 3565–3590 | MR

[28] Hong, J.; Kim, Y.; Pac, P.-Y. Multivortex solutions of the Abelian Chern–Simons–Higgs theory, Phys. Rev. Lett., Volume 64 (1990), pp. 2330–2333 | DOI | MR | Zbl

[29] Horvathy, P.A.; Zhang, P. Vortices in (Abelian) Chern–Simons gauge theory, Phys. Rep., Volume 481 (2009), pp. 83–142 | DOI | MR

[30] Huang, G.; Lin, C.-S. The existence of non-topological solutions for a skew-symmetric Chern–Simons system, Indiana Univ. Math. J., Volume 65 (2016), pp. 453–491 | MR

[31] Huang, H.-Y.; Lee, Y.; Lin, C.-S. Uniqueness of topological multi-vortex solutions for a skew-symmetric Chern–Simons system, J. Math. Phys., Volume 56 (2015) | MR

[32] Inouye, S.; Gupta, S.; Rosenband, T.; Chikkatur, A.P.; Görlitz, A.; Gustavson, T.L.; Leanhardt, A.E.; Pritchard, D.E.; Ketterle, W. Observation of vortex phase singularities in Bose–Einstein condensates, Phys. Rev. Lett., Volume 87 (2001) | DOI

[33] Jackiw, R.; Lee, K.M.; Weinberg, E.J. Self-dual Chern–Simons solitons, Phys. Rev. D, Volume 42 (1990), pp. 3488–3499 | DOI | MR

[34] Jackiw, R.; Weinberg, E.J. Self-dual Chern–Simons vortices, Phys. Rev. Lett., Volume 64 (1990), pp. 2334–2337 | DOI | MR | Zbl

[35] Kao, H.-C.; Lee, K. Self-dual SU(3) Chern–Simons Higgs systems, Phys. Rev. D, Volume 50 (1994), pp. 6626–6632 | MR

[36] Khare, A. Chern–Simons term and charged vortices in Abelian and non-Abelian gauge theories, Proc. Indian Natl. Sci. Acad., A, Phys. Sci., Volume 61 (1995), pp. 161–178 | MR

[37] Khomskii, D.I.; Freimuth, A. Charged vortices in high temperature superconductors, Phys. Rev. Lett., Volume 75 (1995), pp. 1384–1386 | DOI

[38] Kim, C. Self-dual vortices in the generalized Abelian Higgs model with independent Chern–Simons interaction, Phys. Rev. D, Volume 47 (1993), pp. 673–684

[39] Kumar, C.N.; Khare, A. Charged vortex of finite energy in nonabelian gauge theories with Chern–Simons term, Phys. Lett. B, Volume 178 (1986), pp. 95–399 | DOI | MR

[40] Lee, K.M. Relativistic non-Abelian self-dual Chern–Simons systems, Phys. Lett. B, Volume 255 (1991), pp. 381 | MR

[41] Lin, C.-S.; Yan, S. Bubbling solutions for the SU(3) Chern–Simons model on a torus, Commun. Pure Appl. Math., Volume 66 (2013), pp. 991–1027 | MR | Zbl

[42] Marino, M. Chern–Simons theory and topological strings, Rev. Mod. Phys., Volume 77 (2005), pp. 675–720 | DOI | MR | Zbl

[43] Matsuda, Y.; Nozaki, K.; Kumagai, K. Charged vortices in high temperature superconductors probed by nuclear magnetic resonance, J. Phys. Chem. Solids, Volume 63 (2002), pp. 1061–1063 | DOI

[44] Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Sarma, S.D. Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys., Volume 80 (2008), pp. 1083–1159 | DOI | MR | Zbl

[45] Nolasco, M.; Tarantello, G. Double vortex condensates in the Chern–Simons–Higgs theory, Calc. Var. Partial Differ. Equ., Volume 9 (1999), pp. 31–94 | DOI | MR | Zbl

[46] Nolasco, M.; Tarantello, G. Vortex condensates for the SU(3) Chern–Simons theory, Commun. Math. Phys., Volume 213 (2000), pp. 599–639 | DOI | MR | Zbl

[47] Oh, P. Classical and quantum mechanics of non-Abelian Chern–Simons particles, Nucl. Phys. B, Volume 462 (1996), pp. 551–570 | MR | Zbl

[48] Prasad, M.K.; Sommerfield, C.M. Exact classical solutions for the 't Hooft monopole and the Julia–Zee dyon, Phys. Rev. Lett., Volume 35 (1975), pp. 760–762 | DOI

[49] Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors, Rev. Mod. Phys., Volume 83 (2011), pp. 1057

[50] Rayfield, G.W.; Reif, F. Evidence for the creation and motion of quantized vortex rings in superfluid helium, Phys. Rev. Lett., Volume 11 (1963), pp. 305 | DOI

[51] Simader, C.G. On Dirichlet's Boundary Value Problem, Lecture Notes Math., vol. 268, Springer, Berlin, Heidelberg, New York, 1972 | DOI | MR | Zbl

[52] Spruck, J.; Yang, Y. Topological solutions in the self-dual Chern–Simons theory: existence and approximation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 12 (1995), pp. 75–97 | DOI | Numdam | MR | Zbl

[53] Spruck, J.; Yang, Y. The existence of non-topological solitons in the self-dual Chern–Simons theory, Commun. Math. Phys., Volume 149 (1992), pp. 361–376 | DOI | MR | Zbl

[54] Tarantello, G. Multiple condensate solutions for the Chern–Simons–Higgs theory, J. Math. Phys., Volume 37 (1996), pp. 3769–3796 | DOI | MR | Zbl

[55] Tarantello, G. Self-Dual Gauge Field Vortices, an Analytic Approach, Progress in Nonlinear Differential Equations and Their Applications, vol. 72, Birkhäuser, Boston, Basel, Berlin, 2008 | MR | Zbl

[56] Tinkham, M. Introduction to Superconductivity, McGraw-Hill, New York, 1996

[57] Wang, R. The existence of Chern–Simons vortices, Commun. Math. Phys., Volume 137 (1991), pp. 587–597 | DOI | MR | Zbl

[58] Wilczek, F. Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore, 1990 | DOI | MR

[59] Witten, E. Quantum field theory and the Jones polynomial, Commun. Math. Phys., Volume 121 (1989), pp. 351–399 | DOI | MR | Zbl

[60] Witten, E. Chern–Simons theory as a string theory, Prog. Math., Volume 133 (1995), pp. 637–678 | MR | Zbl

[61] Yang, Y. The relativistic non-Abelian Chern–Simons equations, Commun. Math. Phys., Volume 186 (1997), pp. 199–218 | DOI | MR | Zbl

[62] Yang, Y. Solitons in Field Theory and Nonlinear Analysis, Springer, New York, 2001 | DOI | MR | Zbl

Cité par Sources :