Multiple solutions for the non-Abelian Chern–Simons–Higgs vortex equations
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1401-1430.

In this paper we study the existence of multiple solutions for the non-Abelian Chern–Simons–Higgs (N×N)-system:

Δui=λ(j=1Nk=1NKkjKjieujeukj=1NKjieuj)+4πj=1niδpij,i=1,,N;
over a doubly periodic domain Ω, with coupling matrix K given by the Cartan matrix of SU(N+1), (see (1.2) below). Here, λ>0 is the coupling parameter, δp is the Dirac measure with pole at p and niN, for i=1,,N. When N=1,2 many results are now available for the periodic solvability of such system and provide the existence of different classes of solutions known as: topological, non-topological, mixed and blow-up type. On the contrary for N3, only recently in [27] the authors managed to obtain the existence of one doubly periodic solution via a minimization procedure, in the spirit of [46]. Our main contribution in this paper is to show (as in [46]) that actually the given system admits a second doubly periodic solutions of “Mountain-pass” type, provided that 3N5. Note that the existence of multiple solutions is relevant from the physical point of view. Indeed, it implies the co-existence of different non-Abelian Chern–Simons condensates sharing the same set (assigned component-wise) of vortex points, energy and fluxes. The main difficulty to overcome is to attain a “compactness” property encompassed by the so-called Palais–Smale condition for the corresponding “action” functional, whose validity remains still open for N6.

DOI : 10.1016/j.anihpc.2019.01.002
Mots-clés : Chern–Simons–Higgs equations, Doubly periodic solutions, Mountain-pass solution
Han, Xiaosen 1 ; Tarantello, Gabriella 2

1 Institute of Contemporary Mathematics, School of Mathematics and Statistics, Henan University, Kaifeng 475004, PR China
2 Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
@article{AIHPC_2019__36_5_1401_0,
     author = {Han, Xiaosen and Tarantello, Gabriella},
     title = {Multiple solutions for the {non-Abelian} {Chern{\textendash}Simons{\textendash}Higgs} vortex equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1401--1430},
     publisher = {Elsevier},
     volume = {36},
     number = {5},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.01.002},
     mrnumber = {3985548},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2019.01.002/}
}
TY  - JOUR
AU  - Han, Xiaosen
AU  - Tarantello, Gabriella
TI  - Multiple solutions for the non-Abelian Chern–Simons–Higgs vortex equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1401
EP  - 1430
VL  - 36
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2019.01.002/
DO  - 10.1016/j.anihpc.2019.01.002
LA  - en
ID  - AIHPC_2019__36_5_1401_0
ER  - 
%0 Journal Article
%A Han, Xiaosen
%A Tarantello, Gabriella
%T Multiple solutions for the non-Abelian Chern–Simons–Higgs vortex equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1401-1430
%V 36
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2019.01.002/
%R 10.1016/j.anihpc.2019.01.002
%G en
%F AIHPC_2019__36_5_1401_0
Han, Xiaosen; Tarantello, Gabriella. Multiple solutions for the non-Abelian Chern–Simons–Higgs vortex equations. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1401-1430. doi : 10.1016/j.anihpc.2019.01.002. https://www.numdam.org/articles/10.1016/j.anihpc.2019.01.002/

[1] Ambrosetti, A.; Rabinowitz, P. Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349–381 | DOI | MR | Zbl

[2] Ao, W.; Lin, C.-S.; Wei, J. On non-topological solutions of the A2 and B2 Chern–Simons system, Mem. Am. Math. Soc., Volume 239 (2016), pp. 1132 | MR

[3] Ao, W.; Lin, C.-S.; Wei, J.C. On non-topological solutions of the G2 Chern–Simons system, Commun. Anal. Geom., Volume 24 (2016), pp. 717–752 | MR

[4] Atiyah, M.F. Topological quantum field theory, Publ. Math. Inst. Hautes Etudes Sci. Paris, Volume 68 (1989), pp. 175–186 | Numdam | MR | Zbl

[5] Aubin, T. Nonlinear Analysis on Manifolds: Monge–Ampére Equations, Springer, Berlin, New York, 1982 | MR | Zbl

[6] Bazeia, D.; da Hora, E.; dos Santos, C.; Menezes, R. Generalized self-dual Chern–Simons vortices, Phys. Rev. D, Volume 81 (2010) | DOI

[7] Bezryadina, A.; Eugenieva, E.; Chen, Z. Self-trapping and flipping of double-charged vortices in optically induced photonic lattices, Opt. Lett., Volume 31 (2006), pp. 2456–2458 | DOI

[8] Bogomol'nyi, E.B. The stability of classical solutions, Sov. J. Nucl. Phys., Volume 24 (1976), pp. 449–454

[9] Burzlaff, J.; Chakrabarti, A.; Tchrakian, D.H. Generalized self-dual Chern–Simons vortices, Phys. Lett. B, Volume 293 (1992), pp. 127–131 | DOI | MR

[10] Caffarelli, L.A.; Yang, Y. Vortex condensation in the Chern–Simons Higgs model: an existence theorem, Commun. Math. Phys., Volume 168 (1995), pp. 321–336 | DOI | MR | Zbl

[11] Chae, D.; Imanuvilov, O.Y. The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory, Commun. Math. Phys., Volume 215 (2000), pp. 119–142 | DOI | MR | Zbl

[12] Chern, S.S.; Simons, J. Some cohomology classes in principal fiber bundles and their application to Riemannian geometry, Proc. Natl. Acad. Sci. USA, Volume 68 (1971), pp. 791–794 | DOI | MR | Zbl

[13] Chern, S.S.; Simons, J. Characteristic forms and geometric invariants, Ann. Math., Volume 99 (1974), pp. 48–69 | DOI | MR | Zbl

[14] Choe, K.; Kim, N.; Lin, C.-S. Self-dual symmetric non-topological solutions in the SU(3) model in R2 , Commun. Math. Phys., Volume 334 (2015), pp. 1–37 | DOI | MR | Zbl

[15] Choe, K.; Kim, N.; Lin, C.-S. Existence of mixed type solutions in the SU(3) Chern–Simons theory in R2 , Calc. Var. Partial Differ. Equ., Volume 56 (2017) | DOI | MR

[16] Choe, K.; Kim, N.; Lee, Y.; Lin, C.-S. Existence of mixed type solutions in the Chern–Simons gauge theory of rank two in R2 , J. Funct. Anal., Volume 273 (2017), pp. 1734–1761 | DOI | MR

[17] Choe, K.; Kim, N.; Lee, Y.; Lin, C.-S. New type of non-topological bubbling solutions in the SU(3) Chern–Simons model in R2 , J. Funct. Anal., Volume 270 (2016), pp. 1–33 | DOI | MR

[18] Cugliandolo, L.F.; Lozano, G.; Manias, M.V.; Schaposnik, F.A. Bogomolny equations for non-Abelian Chern–Simons Higgs theories, Mod. Phys. Lett. A, Volume 6 (1991), pp. 479 | DOI | MR | Zbl

[19] Dasgupta, K.; Errasti Díez, V.; Ramadevi, P.; Tatar, R. Knot invariants and M-theory: Hitchin equations, Chern–Simons actions, and surface operators, Phys. Rev. D, Volume 95 (2017) | DOI | MR

[20] Dunne, G. Self-Dual Chern–Simons Theories, Lecture Notes in Physics, vol. 36, Springer, Berlin, 1995 | DOI | Zbl

[21] Dunne, G. Mass degeneracies in self-dual models, Phys. Lett. B, Volume 345 (1995), pp. 452–457 | DOI | MR

[22] Dunne, G.; Jackiw, R.; Pi, S.-Y.; Trugenberger, C. Self-dual Chern–Simons solitons and two-dimensional nonlinear equations, Phys. Rev. D, Volume 43 (1991), pp. 1332–1345 | MR

[23] Ghosh, P.K. Bogomol'nyi equations of Maxwell–Chern–Simons vortices from a generalized Abelian Higgs model, Phys. Rev. D, Volume 49 (1993), pp. 5458–5468

[24] Ghoussoub, N. Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press, Cambridge, 1993 | DOI | MR | Zbl

[25] Han, X.; Lin, C.-S.; Yang, Y. Resolution of Chern–Simons–Higgs vortex equations, Commun. Math. Phys., Volume 343 (2016), pp. 701–724 | MR

[26] Han, X.; Tarantello, G. Doubly periodic self-dual vortices in a relativistic non-Abelian Chern–Simons model, Calc. Var. Partial Differ. Equ., Volume 49 (2014), pp. 1149–1176 | MR | Zbl

[27] Han, X.; Yang, Y. Relativistic Chern–Simons–Higgs vortex equations, Trans. Am. Math. Soc., Volume 368 (2016), pp. 3565–3590 | MR

[28] Hong, J.; Kim, Y.; Pac, P.-Y. Multivortex solutions of the Abelian Chern–Simons–Higgs theory, Phys. Rev. Lett., Volume 64 (1990), pp. 2330–2333 | DOI | MR | Zbl

[29] Horvathy, P.A.; Zhang, P. Vortices in (Abelian) Chern–Simons gauge theory, Phys. Rep., Volume 481 (2009), pp. 83–142 | DOI | MR

[30] Huang, G.; Lin, C.-S. The existence of non-topological solutions for a skew-symmetric Chern–Simons system, Indiana Univ. Math. J., Volume 65 (2016), pp. 453–491 | MR

[31] Huang, H.-Y.; Lee, Y.; Lin, C.-S. Uniqueness of topological multi-vortex solutions for a skew-symmetric Chern–Simons system, J. Math. Phys., Volume 56 (2015) | MR

[32] Inouye, S.; Gupta, S.; Rosenband, T.; Chikkatur, A.P.; Görlitz, A.; Gustavson, T.L.; Leanhardt, A.E.; Pritchard, D.E.; Ketterle, W. Observation of vortex phase singularities in Bose–Einstein condensates, Phys. Rev. Lett., Volume 87 (2001) | DOI

[33] Jackiw, R.; Lee, K.M.; Weinberg, E.J. Self-dual Chern–Simons solitons, Phys. Rev. D, Volume 42 (1990), pp. 3488–3499 | DOI | MR

[34] Jackiw, R.; Weinberg, E.J. Self-dual Chern–Simons vortices, Phys. Rev. Lett., Volume 64 (1990), pp. 2334–2337 | DOI | MR | Zbl

[35] Kao, H.-C.; Lee, K. Self-dual SU(3) Chern–Simons Higgs systems, Phys. Rev. D, Volume 50 (1994), pp. 6626–6632 | MR

[36] Khare, A. Chern–Simons term and charged vortices in Abelian and non-Abelian gauge theories, Proc. Indian Natl. Sci. Acad., A, Phys. Sci., Volume 61 (1995), pp. 161–178 | MR

[37] Khomskii, D.I.; Freimuth, A. Charged vortices in high temperature superconductors, Phys. Rev. Lett., Volume 75 (1995), pp. 1384–1386 | DOI

[38] Kim, C. Self-dual vortices in the generalized Abelian Higgs model with independent Chern–Simons interaction, Phys. Rev. D, Volume 47 (1993), pp. 673–684

[39] Kumar, C.N.; Khare, A. Charged vortex of finite energy in nonabelian gauge theories with Chern–Simons term, Phys. Lett. B, Volume 178 (1986), pp. 95–399 | DOI | MR

[40] Lee, K.M. Relativistic non-Abelian self-dual Chern–Simons systems, Phys. Lett. B, Volume 255 (1991), pp. 381 | MR

[41] Lin, C.-S.; Yan, S. Bubbling solutions for the SU(3) Chern–Simons model on a torus, Commun. Pure Appl. Math., Volume 66 (2013), pp. 991–1027 | MR | Zbl

[42] Marino, M. Chern–Simons theory and topological strings, Rev. Mod. Phys., Volume 77 (2005), pp. 675–720 | DOI | MR | Zbl

[43] Matsuda, Y.; Nozaki, K.; Kumagai, K. Charged vortices in high temperature superconductors probed by nuclear magnetic resonance, J. Phys. Chem. Solids, Volume 63 (2002), pp. 1061–1063 | DOI

[44] Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Sarma, S.D. Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys., Volume 80 (2008), pp. 1083–1159 | DOI | MR | Zbl

[45] Nolasco, M.; Tarantello, G. Double vortex condensates in the Chern–Simons–Higgs theory, Calc. Var. Partial Differ. Equ., Volume 9 (1999), pp. 31–94 | DOI | MR | Zbl

[46] Nolasco, M.; Tarantello, G. Vortex condensates for the SU(3) Chern–Simons theory, Commun. Math. Phys., Volume 213 (2000), pp. 599–639 | DOI | MR | Zbl

[47] Oh, P. Classical and quantum mechanics of non-Abelian Chern–Simons particles, Nucl. Phys. B, Volume 462 (1996), pp. 551–570 | MR | Zbl

[48] Prasad, M.K.; Sommerfield, C.M. Exact classical solutions for the 't Hooft monopole and the Julia–Zee dyon, Phys. Rev. Lett., Volume 35 (1975), pp. 760–762 | DOI

[49] Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors, Rev. Mod. Phys., Volume 83 (2011), pp. 1057

[50] Rayfield, G.W.; Reif, F. Evidence for the creation and motion of quantized vortex rings in superfluid helium, Phys. Rev. Lett., Volume 11 (1963), pp. 305 | DOI

[51] Simader, C.G. On Dirichlet's Boundary Value Problem, Lecture Notes Math., vol. 268, Springer, Berlin, Heidelberg, New York, 1972 | DOI | MR | Zbl

[52] Spruck, J.; Yang, Y. Topological solutions in the self-dual Chern–Simons theory: existence and approximation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 12 (1995), pp. 75–97 | DOI | Numdam | MR | Zbl

[53] Spruck, J.; Yang, Y. The existence of non-topological solitons in the self-dual Chern–Simons theory, Commun. Math. Phys., Volume 149 (1992), pp. 361–376 | DOI | MR | Zbl

[54] Tarantello, G. Multiple condensate solutions for the Chern–Simons–Higgs theory, J. Math. Phys., Volume 37 (1996), pp. 3769–3796 | DOI | MR | Zbl

[55] Tarantello, G. Self-Dual Gauge Field Vortices, an Analytic Approach, Progress in Nonlinear Differential Equations and Their Applications, vol. 72, Birkhäuser, Boston, Basel, Berlin, 2008 | MR | Zbl

[56] Tinkham, M. Introduction to Superconductivity, McGraw-Hill, New York, 1996

[57] Wang, R. The existence of Chern–Simons vortices, Commun. Math. Phys., Volume 137 (1991), pp. 587–597 | DOI | MR | Zbl

[58] Wilczek, F. Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore, 1990 | DOI | MR

[59] Witten, E. Quantum field theory and the Jones polynomial, Commun. Math. Phys., Volume 121 (1989), pp. 351–399 | DOI | MR | Zbl

[60] Witten, E. Chern–Simons theory as a string theory, Prog. Math., Volume 133 (1995), pp. 637–678 | MR | Zbl

[61] Yang, Y. The relativistic non-Abelian Chern–Simons equations, Commun. Math. Phys., Volume 186 (1997), pp. 199–218 | DOI | MR | Zbl

[62] Yang, Y. Solitons in Field Theory and Nonlinear Analysis, Springer, New York, 2001 | DOI | MR | Zbl

Cité par Sources :