In this paper we study the existence of multiple solutions for the non-Abelian Chern–Simons–Higgs -system:
@article{AIHPC_2019__36_5_1401_0, author = {Han, Xiaosen and Tarantello, Gabriella}, title = {Multiple solutions for the {non-Abelian} {Chern{\textendash}Simons{\textendash}Higgs} vortex equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1401--1430}, publisher = {Elsevier}, volume = {36}, number = {5}, year = {2019}, doi = {10.1016/j.anihpc.2019.01.002}, mrnumber = {3985548}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.002/} }
TY - JOUR AU - Han, Xiaosen AU - Tarantello, Gabriella TI - Multiple solutions for the non-Abelian Chern–Simons–Higgs vortex equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 1401 EP - 1430 VL - 36 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.002/ DO - 10.1016/j.anihpc.2019.01.002 LA - en ID - AIHPC_2019__36_5_1401_0 ER -
%0 Journal Article %A Han, Xiaosen %A Tarantello, Gabriella %T Multiple solutions for the non-Abelian Chern–Simons–Higgs vortex equations %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 1401-1430 %V 36 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.002/ %R 10.1016/j.anihpc.2019.01.002 %G en %F AIHPC_2019__36_5_1401_0
Han, Xiaosen; Tarantello, Gabriella. Multiple solutions for the non-Abelian Chern–Simons–Higgs vortex equations. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1401-1430. doi : 10.1016/j.anihpc.2019.01.002. http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.002/
[1] Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349–381 | DOI | MR | Zbl
[2] On non-topological solutions of the and Chern–Simons system, Mem. Am. Math. Soc., Volume 239 (2016), pp. 1132 | MR
[3] On non-topological solutions of the Chern–Simons system, Commun. Anal. Geom., Volume 24 (2016), pp. 717–752 | MR
[4] Topological quantum field theory, Publ. Math. Inst. Hautes Etudes Sci. Paris, Volume 68 (1989), pp. 175–186 | Numdam | MR | Zbl
[5] Nonlinear Analysis on Manifolds: Monge–Ampére Equations, Springer, Berlin, New York, 1982 | MR | Zbl
[6] Generalized self-dual Chern–Simons vortices, Phys. Rev. D, Volume 81 (2010) | DOI
[7] Self-trapping and flipping of double-charged vortices in optically induced photonic lattices, Opt. Lett., Volume 31 (2006), pp. 2456–2458 | DOI
[8] The stability of classical solutions, Sov. J. Nucl. Phys., Volume 24 (1976), pp. 449–454
[9] Generalized self-dual Chern–Simons vortices, Phys. Lett. B, Volume 293 (1992), pp. 127–131 | DOI | MR
[10] Vortex condensation in the Chern–Simons Higgs model: an existence theorem, Commun. Math. Phys., Volume 168 (1995), pp. 321–336 | DOI | MR | Zbl
[11] The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory, Commun. Math. Phys., Volume 215 (2000), pp. 119–142 | DOI | MR | Zbl
[12] Some cohomology classes in principal fiber bundles and their application to Riemannian geometry, Proc. Natl. Acad. Sci. USA, Volume 68 (1971), pp. 791–794 | DOI | MR | Zbl
[13] Characteristic forms and geometric invariants, Ann. Math., Volume 99 (1974), pp. 48–69 | DOI | MR | Zbl
[14] Self-dual symmetric non-topological solutions in the model in , Commun. Math. Phys., Volume 334 (2015), pp. 1–37 | DOI | MR | Zbl
[15] Existence of mixed type solutions in the SU(3) Chern–Simons theory in , Calc. Var. Partial Differ. Equ., Volume 56 (2017) | DOI | MR
[16] Existence of mixed type solutions in the Chern–Simons gauge theory of rank two in , J. Funct. Anal., Volume 273 (2017), pp. 1734–1761 | DOI | MR
[17] New type of non-topological bubbling solutions in the Chern–Simons model in , J. Funct. Anal., Volume 270 (2016), pp. 1–33 | DOI | MR
[18] Bogomolny equations for non-Abelian Chern–Simons Higgs theories, Mod. Phys. Lett. A, Volume 6 (1991), pp. 479 | DOI | MR | Zbl
[19] Knot invariants and M-theory: Hitchin equations, Chern–Simons actions, and surface operators, Phys. Rev. D, Volume 95 (2017) | DOI | MR
[20] Self-Dual Chern–Simons Theories, Lecture Notes in Physics, vol. 36, Springer, Berlin, 1995 | DOI | Zbl
[21] Mass degeneracies in self-dual models, Phys. Lett. B, Volume 345 (1995), pp. 452–457 | DOI | MR
[22] Self-dual Chern–Simons solitons and two-dimensional nonlinear equations, Phys. Rev. D, Volume 43 (1991), pp. 1332–1345 | MR
[23] Bogomol'nyi equations of Maxwell–Chern–Simons vortices from a generalized Abelian Higgs model, Phys. Rev. D, Volume 49 (1993), pp. 5458–5468
[24] Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press, Cambridge, 1993 | DOI | MR | Zbl
[25] Resolution of Chern–Simons–Higgs vortex equations, Commun. Math. Phys., Volume 343 (2016), pp. 701–724 | MR
[26] Doubly periodic self-dual vortices in a relativistic non-Abelian Chern–Simons model, Calc. Var. Partial Differ. Equ., Volume 49 (2014), pp. 1149–1176 | MR | Zbl
[27] Relativistic Chern–Simons–Higgs vortex equations, Trans. Am. Math. Soc., Volume 368 (2016), pp. 3565–3590 | MR
[28] Multivortex solutions of the Abelian Chern–Simons–Higgs theory, Phys. Rev. Lett., Volume 64 (1990), pp. 2330–2333 | DOI | MR | Zbl
[29] Vortices in (Abelian) Chern–Simons gauge theory, Phys. Rep., Volume 481 (2009), pp. 83–142 | DOI | MR
[30] The existence of non-topological solutions for a skew-symmetric Chern–Simons system, Indiana Univ. Math. J., Volume 65 (2016), pp. 453–491 | MR
[31] Uniqueness of topological multi-vortex solutions for a skew-symmetric Chern–Simons system, J. Math. Phys., Volume 56 (2015) | MR
[32] Observation of vortex phase singularities in Bose–Einstein condensates, Phys. Rev. Lett., Volume 87 (2001) | DOI
[33] Self-dual Chern–Simons solitons, Phys. Rev. D, Volume 42 (1990), pp. 3488–3499 | DOI | MR
[34] Self-dual Chern–Simons vortices, Phys. Rev. Lett., Volume 64 (1990), pp. 2334–2337 | DOI | MR | Zbl
[35] Self-dual Chern–Simons Higgs systems, Phys. Rev. D, Volume 50 (1994), pp. 6626–6632 | MR
[36] Chern–Simons term and charged vortices in Abelian and non-Abelian gauge theories, Proc. Indian Natl. Sci. Acad., A, Phys. Sci., Volume 61 (1995), pp. 161–178 | MR
[37] Charged vortices in high temperature superconductors, Phys. Rev. Lett., Volume 75 (1995), pp. 1384–1386 | DOI
[38] Self-dual vortices in the generalized Abelian Higgs model with independent Chern–Simons interaction, Phys. Rev. D, Volume 47 (1993), pp. 673–684
[39] Charged vortex of finite energy in nonabelian gauge theories with Chern–Simons term, Phys. Lett. B, Volume 178 (1986), pp. 95–399 | DOI | MR
[40] Relativistic non-Abelian self-dual Chern–Simons systems, Phys. Lett. B, Volume 255 (1991), pp. 381 | MR
[41] Bubbling solutions for the Chern–Simons model on a torus, Commun. Pure Appl. Math., Volume 66 (2013), pp. 991–1027 | MR | Zbl
[42] Chern–Simons theory and topological strings, Rev. Mod. Phys., Volume 77 (2005), pp. 675–720 | DOI | MR | Zbl
[43] Charged vortices in high temperature superconductors probed by nuclear magnetic resonance, J. Phys. Chem. Solids, Volume 63 (2002), pp. 1061–1063 | DOI
[44] Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys., Volume 80 (2008), pp. 1083–1159 | DOI | MR | Zbl
[45] Double vortex condensates in the Chern–Simons–Higgs theory, Calc. Var. Partial Differ. Equ., Volume 9 (1999), pp. 31–94 | DOI | MR | Zbl
[46] Vortex condensates for the Chern–Simons theory, Commun. Math. Phys., Volume 213 (2000), pp. 599–639 | DOI | MR | Zbl
[47] Classical and quantum mechanics of non-Abelian Chern–Simons particles, Nucl. Phys. B, Volume 462 (1996), pp. 551–570 | MR | Zbl
[48] Exact classical solutions for the 't Hooft monopole and the Julia–Zee dyon, Phys. Rev. Lett., Volume 35 (1975), pp. 760–762 | DOI
[49] Topological insulators and superconductors, Rev. Mod. Phys., Volume 83 (2011), pp. 1057
[50] Evidence for the creation and motion of quantized vortex rings in superfluid helium, Phys. Rev. Lett., Volume 11 (1963), pp. 305 | DOI
[51] On Dirichlet's Boundary Value Problem, Lecture Notes Math., vol. 268, Springer, Berlin, Heidelberg, New York, 1972 | DOI | MR | Zbl
[52] Topological solutions in the self-dual Chern–Simons theory: existence and approximation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 12 (1995), pp. 75–97 | DOI | Numdam | MR | Zbl
[53] The existence of non-topological solitons in the self-dual Chern–Simons theory, Commun. Math. Phys., Volume 149 (1992), pp. 361–376 | DOI | MR | Zbl
[54] Multiple condensate solutions for the Chern–Simons–Higgs theory, J. Math. Phys., Volume 37 (1996), pp. 3769–3796 | DOI | MR | Zbl
[55] Self-Dual Gauge Field Vortices, an Analytic Approach, Progress in Nonlinear Differential Equations and Their Applications, vol. 72, Birkhäuser, Boston, Basel, Berlin, 2008 | MR | Zbl
[56] Introduction to Superconductivity, McGraw-Hill, New York, 1996
[57] The existence of Chern–Simons vortices, Commun. Math. Phys., Volume 137 (1991), pp. 587–597 | DOI | MR | Zbl
[58] Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore, 1990 | DOI | MR
[59] Quantum field theory and the Jones polynomial, Commun. Math. Phys., Volume 121 (1989), pp. 351–399 | DOI | MR | Zbl
[60] Chern–Simons theory as a string theory, Prog. Math., Volume 133 (1995), pp. 637–678 | MR | Zbl
[61] The relativistic non-Abelian Chern–Simons equations, Commun. Math. Phys., Volume 186 (1997), pp. 199–218 | DOI | MR | Zbl
[62] Solitons in Field Theory and Nonlinear Analysis, Springer, New York, 2001 | DOI | MR | Zbl
Cité par Sources :