On the radius of spatial analyticity for solutions of the Dirac–Klein–Gordon equations in two space dimensions
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1311-1330.

We consider the initial value problem for the Dirac–Klein–Gordon equations in two space dimensions. Global regularity for C data was proved by Grünrock and Pecher. Here we consider analytic data, proving that if the initial radius of analyticity is σ0>0, then for later times t>0 the radius of analyticity obeys a lower bound σ(t)σ0exp(At). This provides information about the possible dynamics of the complex singularities of the holomorphic extension of the solution at time t. The proof relies on an analytic version of Bourgain's Fourier restriction norm method, multilinear space–time estimates of null form type and an approximate conservation of charge.

DOI : 10.1016/j.anihpc.2018.12.002
Mots-clés : Spatial analyticity, Dirac–Klein–Gordon equations, Null forms, Fourier restriction norms
@article{AIHPC_2019__36_5_1311_0,
     author = {Selberg, Sigmund},
     title = {On the radius of spatial analyticity for solutions of the {Dirac{\textendash}Klein{\textendash}Gordon} equations in two space dimensions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1311--1330},
     publisher = {Elsevier},
     volume = {36},
     number = {5},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.12.002},
     mrnumber = {3985545},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.002/}
}
TY  - JOUR
AU  - Selberg, Sigmund
TI  - On the radius of spatial analyticity for solutions of the Dirac–Klein–Gordon equations in two space dimensions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1311
EP  - 1330
VL  - 36
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.002/
DO  - 10.1016/j.anihpc.2018.12.002
LA  - en
ID  - AIHPC_2019__36_5_1311_0
ER  - 
%0 Journal Article
%A Selberg, Sigmund
%T On the radius of spatial analyticity for solutions of the Dirac–Klein–Gordon equations in two space dimensions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1311-1330
%V 36
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.002/
%R 10.1016/j.anihpc.2018.12.002
%G en
%F AIHPC_2019__36_5_1311_0
Selberg, Sigmund. On the radius of spatial analyticity for solutions of the Dirac–Klein–Gordon equations in two space dimensions. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1311-1330. doi : 10.1016/j.anihpc.2018.12.002. http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.002/

[1] Alinhac, S.; Métivier, G. Propagation de l'analyticité des solutions de systèmes hyperboliques non-linéaires, Invent. Math., Volume 75 (1984) no. 2, pp. 189–204 (MR 732545) | DOI | MR | Zbl

[2] Bejenaru, Ioan; Herr, Sebastian On global well-posedness and scattering for the massive Dirac–Klein–Gordon system, J. Eur. Math. Soc., Volume 19 (2017) no. 8, pp. 2445–2467 (MR 3668064) | MR

[3] Bjorken, James D.; Drell, Sidney D. Relativistic Quantum Mechanics, McGraw-Hill Book Co., New York–Toronto–London, 1964 (MR 0187641) | MR

[4] Bona, Jerry L.; Grujić, Zoran; Kalisch, Henrik Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 6, pp. 783–797 MR 2172859 (2006e:35282) | Numdam | MR | Zbl

[5] Bona, Jerry L.; Grujić, Zoran; Kalisch, Henrik Global solutions of the derivative Schrödinger equation in a class of functions analytic in a strip, J. Differ. Equ., Volume 229 (2006) no. 1, pp. 186–203 MR 2265624 (2007k:35453) | MR | Zbl

[6] Bourgain, J. On the Cauchy problem for the Kadomtsev–Petviashvili equation, Geom. Funct. Anal., Volume 3 (1993) no. 4, pp. 315–341 MR 1223434 (94d:35142) | DOI | MR | Zbl

[7] Candy, Timothy; Herr, Sebastian Transference of bilinear restriction estimates to quadratic variation norms and the Dirac–Klein–Gordon system, Anal. PDE, Volume 11 (2018) no. 5, pp. 1171–1240 (MR 3785603) | MR

[8] Cappiello, Marco; D'Ancona, Piero; Nicola, Fabio On the radius of spatial analyticity for semilinear symmetric hyperbolic systems, J. Differ. Equ., Volume 256 (2014) no. 7, pp. 2603–2618 (MR 3160455) | MR | Zbl

[9] Chadam, John M. Global solutions of the Cauchy problem for the (classical) coupled Maxwell–Dirac equations in one space dimension, J. Funct. Anal., Volume 13 (1973), pp. 173–184 MR 0368640 (51 #4881) | MR | Zbl

[10] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., Volume 211 (2004) no. 1, pp. 173–218 MR 2054622 (2005a:35241) | DOI | MR | Zbl

[11] D'Ancona, Piero; Foschi, Damiano; Selberg, Sigmund Local well-posedness below the charge norm for the Dirac–Klein–Gordon system in two space dimensions, J. Hyperbolic Differ. Equ., Volume 4 (2007) no. 2, pp. 295–330 (MR 2329387) | MR | Zbl

[12] D'Ancona, Piero; Foschi, Damiano; Selberg, Sigmund Null structure and almost optimal local regularity for the Dirac–Klein–Gordon system, J. Eur. Math. Soc., Volume 9 (2007) no. 4, pp. 877–899 (MR 2341835) | MR | Zbl

[13] D'Ancona, Piero; Selberg, Sigmund Global well-posedness of the Maxwell–Dirac system in two space dimensions, J. Funct. Anal., Volume 260 (2011) no. 8, pp. 2300–2365 (MR 2772373) | MR | Zbl

[14] Foschi, Damiano; Klainerman, Sergiu Bilinear space–time estimates for homogeneous wave equations, Ann. Sci. Éc. Norm. Supér. (4), Volume 33 (2000) no. 2, pp. 211–274 (MR 1755116) | Numdam | MR | Zbl

[15] Gérard, Patrick; Guo, Yanqiu; Titi, Edriss S. On the radius of analyticity of solutions to the cubic Szegő equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 1, pp. 97–108 (MR 3303943) | Numdam | MR | Zbl

[16] Grünrock, Axel; Pecher, Hartmut Global solutions for the Dirac–Klein–Gordon system in two space dimensions, Commun. Partial Differ. Equ., Volume 35 (2010) no. 1, pp. 89–112 (MR 2748619) | MR | Zbl

[17] Hayashi, Nakao Global existence of small analytic solutions to nonlinear Schrödinger equations, Duke Math. J., Volume 60 (1990) no. 3, pp. 717–727 MR 1054532 (92d:35270) | MR | Zbl

[18] Hayashi, Nakao Analyticity of solutions of the Korteweg–de Vries equation, SIAM J. Math. Anal., Volume 22 (1991) no. 6, pp. 1738–1743 (MR 1129407) | MR | Zbl

[19] Kato, Tosio; Masuda, Kyūya Nonlinear evolution equations and analyticity. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 3 (1986) no. 6, pp. 455–467 MR 870865 (88h:34041) | Numdam | MR | Zbl

[20] Kukavica, Igor; Vicol, Vlad On the radius of analyticity of solutions to the three-dimensional Euler equations, Proc. Am. Math. Soc., Volume 137 (2009) no. 2, pp. 669–677 (MR 2448589) | MR | Zbl

[21] Machihara, Shuji; Nakanishi, Kenji; Tsugawa, Kotaro Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., Volume 50 (2010) no. 2, pp. 403–451 MR 2666663 (2011d:35435) | MR | Zbl

[22] Selberg, Sigmund Bilinear Fourier restriction estimates related to the 2D wave equation, Adv. Differ. Equ., Volume 16 (2011) no. 7–8, pp. 667–690 (MR 2829500) | MR | Zbl

[23] Selberg, Sigmund; Gesztesy, Fritz Spatial analyticity of solutions to nonlinear dispersive PDE, Non-linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis, European Mathematical Society, 2018, pp. 437–454 (MR 3823855) | MR

[24] Selberg, Sigmund; da Silva, Daniel Oliveira Lower bounds on the radius of spatial analyticity for the KdV equation, Ann. Henri Poincaré, Volume 18 (2017) no. 3, pp. 1009–1023 (MR 3611022) | MR

[25] Selberg, Sigmund; Tesfahun, Achenef On the radius of spatial analyticity for the 1d Dirac–Klein–Gordon equations, J. Differ. Equ., Volume 259 (2015), pp. 4732–4744 | MR

[26] Tao, Terence Multilinear weighted convolution of L2-functions, and applications to nonlinear dispersive equations, Am. J. Math., Volume 123 (2001) no. 5, pp. 839–908 (MR 1854113) | MR | Zbl

[27] Tesfahun, Achenef On the radius of spatial analyticity for cubic nonlinear Schrödinger equations, J. Differ. Equ., Volume 263 (2017) no. 11, pp. 7496–7512 (MR 3705690) | MR

[28] Wang, Xuecheng On global existence of 3D charge critical Dirac–Klein–Gordon system, Int. Math. Res. Not. (2015) no. 21, pp. 10801–10846 (MR 3456028) | MR

  • Esfahani, Amin; Tesfahun, Achenef Well-posedness and analyticity of solutions for the sixth-order Boussinesq equation, Communications in Contemporary Mathematics, Volume 27 (2025) no. 2, p. 29 (Id/No 2450005) | DOI:10.1142/s0219199724500056 | Zbl:7955303
  • Liu, Zhengyan; Wu, Xinglong; Guo, Boling Global analyticity and the lower bounds of analytic radius for the Chaplygin gas equations with source terms, Journal of Differential Equations, Volume 419 (2025), p. 81 | DOI:10.1016/j.jde.2024.11.027
  • Getachew, Tegegne; Belayneh, Birilew New asymptotic lower bound for the radius of analyticity of solutions to nonlinear Schrödinger equation, Analysis and Applications (Singapore), Volume 22 (2024) no. 5, pp. 815-832 | DOI:10.1142/s0219530524500039 | Zbl:1544.35014
  • Baldasso, Mikaela; Panthee, Mahendra Improved algebraic lower bound for the radius of spatial analyticity for the generalized KdV equation, Nonlinear Analysis. Real World Applications, Volume 77 (2024), p. 11 (Id/No 104054) | DOI:10.1016/j.nonrwa.2023.104054 | Zbl:1540.35334
  • Figueira, Renata O.; Nogueira, Marcelo; Panthee, Mahendra Lower bounds on the radius of analyticity for a system of nonlinear quadratic interactions of the Schrödinger-type equations, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 4, p. 14 (Id/No 136) | DOI:10.1007/s00033-024-02279-8 | Zbl:7900952
  • Yang, Pan; Zhao, Yajuan On the radius of spatial analyticity for Ostrovsky equation with positive dispersion, Applicable Analysis, Volume 102 (2023) no. 16, pp. 4563-4580 | DOI:10.1080/00036811.2022.2122450 | Zbl:1541.35013
  • Tegegn, Emawayish; Tesfahun, Achenef; Belayneh, Birilew Lower bounds on the radius of spatial analyticity of solution for KdV-BBM type equations, NoDEA. Nonlinear Differential Equations and Applications, Volume 30 (2023) no. 4, p. 24 (Id/No 47) | DOI:10.1007/s00030-023-00855-x | Zbl:1514.35078
  • Ahn, Jaeseop; Kim, Jimyeong; Seo, Ihyeok On the radius of spatial analyticity for the Klein-Gordon-Schrödinger system, Journal of Differential Equations, Volume 321 (2022), pp. 449-474 | DOI:10.1016/j.jde.2022.03.018 | Zbl:1490.35008
  • Carvajal, X.; Panthee, M. On propagation of regularities and evolution of radius of analyticity in the solution of the fifth-order KdV-BBM model, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 2, p. 15 (Id/No 68) | DOI:10.1007/s00033-022-01704-0 | Zbl:1485.35004
  • Ahn, Jaeseop; Kim, Jimyeong; Seo, Ihyeok Lower bounds on the radius of spatial analyticity for the Kawahara equation, Analysis and Mathematical Physics, Volume 11 (2021) no. 1, p. 22 (Id/No 28) | DOI:10.1007/s13324-020-00447-3 | Zbl:1457.32021
  • Ahn, Jaeseop; Kim, Jimyeong; Seo, Ihyeok On the radius of spatial analyticity for defocusing nonlinear Schrödinger equations, Discrete and Continuous Dynamical Systems, Volume 40 (2020) no. 1, pp. 423-439 | DOI:10.3934/dcds.2020016 | Zbl:1516.35204

Cité par 11 documents. Sources : Crossref, zbMATH