We consider the initial value problem for the Dirac–Klein–Gordon equations in two space dimensions. Global regularity for
@article{AIHPC_2019__36_5_1311_0, author = {Selberg, Sigmund}, title = {On the radius of spatial analyticity for solutions of the {Dirac{\textendash}Klein{\textendash}Gordon} equations in two space dimensions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1311--1330}, publisher = {Elsevier}, volume = {36}, number = {5}, year = {2019}, doi = {10.1016/j.anihpc.2018.12.002}, mrnumber = {3985545}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.002/} }
TY - JOUR AU - Selberg, Sigmund TI - On the radius of spatial analyticity for solutions of the Dirac–Klein–Gordon equations in two space dimensions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 1311 EP - 1330 VL - 36 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.002/ DO - 10.1016/j.anihpc.2018.12.002 LA - en ID - AIHPC_2019__36_5_1311_0 ER -
%0 Journal Article %A Selberg, Sigmund %T On the radius of spatial analyticity for solutions of the Dirac–Klein–Gordon equations in two space dimensions %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 1311-1330 %V 36 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.002/ %R 10.1016/j.anihpc.2018.12.002 %G en %F AIHPC_2019__36_5_1311_0
Selberg, Sigmund. On the radius of spatial analyticity for solutions of the Dirac–Klein–Gordon equations in two space dimensions. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1311-1330. doi : 10.1016/j.anihpc.2018.12.002. http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.002/
[1] Propagation de l'analyticité des solutions de systèmes hyperboliques non-linéaires, Invent. Math., Volume 75 (1984) no. 2, pp. 189–204 (MR 732545) | DOI | MR | Zbl
[2] On global well-posedness and scattering for the massive Dirac–Klein–Gordon system, J. Eur. Math. Soc., Volume 19 (2017) no. 8, pp. 2445–2467 (MR 3668064) | MR
[3] Relativistic Quantum Mechanics, McGraw-Hill Book Co., New York–Toronto–London, 1964 (MR 0187641) | MR
[4] Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 6, pp. 783–797 MR 2172859 (2006e:35282) | Numdam | MR | Zbl
[5] Global solutions of the derivative Schrödinger equation in a class of functions analytic in a strip, J. Differ. Equ., Volume 229 (2006) no. 1, pp. 186–203 MR 2265624 (2007k:35453) | MR | Zbl
[6] On the Cauchy problem for the Kadomtsev–Petviashvili equation, Geom. Funct. Anal., Volume 3 (1993) no. 4, pp. 315–341 MR 1223434 (94d:35142) | DOI | MR | Zbl
[7] Transference of bilinear restriction estimates to quadratic variation norms and the Dirac–Klein–Gordon system, Anal. PDE, Volume 11 (2018) no. 5, pp. 1171–1240 (MR 3785603) | MR
[8] On the radius of spatial analyticity for semilinear symmetric hyperbolic systems, J. Differ. Equ., Volume 256 (2014) no. 7, pp. 2603–2618 (MR 3160455) | MR | Zbl
[9] Global solutions of the Cauchy problem for the (classical) coupled Maxwell–Dirac equations in one space dimension, J. Funct. Anal., Volume 13 (1973), pp. 173–184 MR 0368640 (51 #4881) | MR | Zbl
[10] Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., Volume 211 (2004) no. 1, pp. 173–218 MR 2054622 (2005a:35241) | DOI | MR | Zbl
[11] Local well-posedness below the charge norm for the Dirac–Klein–Gordon system in two space dimensions, J. Hyperbolic Differ. Equ., Volume 4 (2007) no. 2, pp. 295–330 (MR 2329387) | MR | Zbl
[12] Null structure and almost optimal local regularity for the Dirac–Klein–Gordon system, J. Eur. Math. Soc., Volume 9 (2007) no. 4, pp. 877–899 (MR 2341835) | MR | Zbl
[13] Global well-posedness of the Maxwell–Dirac system in two space dimensions, J. Funct. Anal., Volume 260 (2011) no. 8, pp. 2300–2365 (MR 2772373) | MR | Zbl
[14] Bilinear space–time estimates for homogeneous wave equations, Ann. Sci. Éc. Norm. Supér. (4), Volume 33 (2000) no. 2, pp. 211–274 (MR 1755116) | Numdam | MR | Zbl
[15] On the radius of analyticity of solutions to the cubic Szegő equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 1, pp. 97–108 (MR 3303943) | Numdam | MR | Zbl
[16] Global solutions for the Dirac–Klein–Gordon system in two space dimensions, Commun. Partial Differ. Equ., Volume 35 (2010) no. 1, pp. 89–112 (MR 2748619) | MR | Zbl
[17] Global existence of small analytic solutions to nonlinear Schrödinger equations, Duke Math. J., Volume 60 (1990) no. 3, pp. 717–727 MR 1054532 (92d:35270) | MR | Zbl
[18] Analyticity of solutions of the Korteweg–de Vries equation, SIAM J. Math. Anal., Volume 22 (1991) no. 6, pp. 1738–1743 (MR 1129407) | MR | Zbl
[19] Nonlinear evolution equations and analyticity. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 3 (1986) no. 6, pp. 455–467 MR 870865 (88h:34041) | Numdam | MR | Zbl
[20] On the radius of analyticity of solutions to the three-dimensional Euler equations, Proc. Am. Math. Soc., Volume 137 (2009) no. 2, pp. 669–677 (MR 2448589) | MR | Zbl
[21] Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., Volume 50 (2010) no. 2, pp. 403–451 MR 2666663 (2011d:35435) | MR | Zbl
[22] Bilinear Fourier restriction estimates related to the 2D wave equation, Adv. Differ. Equ., Volume 16 (2011) no. 7–8, pp. 667–690 (MR 2829500) | MR | Zbl
[23] Spatial analyticity of solutions to nonlinear dispersive PDE, Non-linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis, European Mathematical Society, 2018, pp. 437–454 (MR 3823855) | MR
[24] Lower bounds on the radius of spatial analyticity for the KdV equation, Ann. Henri Poincaré, Volume 18 (2017) no. 3, pp. 1009–1023 (MR 3611022) | MR
[25] On the radius of spatial analyticity for the 1d Dirac–Klein–Gordon equations, J. Differ. Equ., Volume 259 (2015), pp. 4732–4744 | MR
[26] Multilinear weighted convolution of
[27] On the radius of spatial analyticity for cubic nonlinear Schrödinger equations, J. Differ. Equ., Volume 263 (2017) no. 11, pp. 7496–7512 (MR 3705690) | MR
[28] On global existence of 3D charge critical Dirac–Klein–Gordon system, Int. Math. Res. Not. (2015) no. 21, pp. 10801–10846 (MR 3456028) | MR
- Well-posedness and analyticity of solutions for the sixth-order Boussinesq equation, Communications in Contemporary Mathematics, Volume 27 (2025) no. 2, p. 29 (Id/No 2450005) | DOI:10.1142/s0219199724500056 | Zbl:7955303
- Global analyticity and the lower bounds of analytic radius for the Chaplygin gas equations with source terms, Journal of Differential Equations, Volume 419 (2025), p. 81 | DOI:10.1016/j.jde.2024.11.027
- New asymptotic lower bound for the radius of analyticity of solutions to nonlinear Schrödinger equation, Analysis and Applications (Singapore), Volume 22 (2024) no. 5, pp. 815-832 | DOI:10.1142/s0219530524500039 | Zbl:1544.35014
- Improved algebraic lower bound for the radius of spatial analyticity for the generalized KdV equation, Nonlinear Analysis. Real World Applications, Volume 77 (2024), p. 11 (Id/No 104054) | DOI:10.1016/j.nonrwa.2023.104054 | Zbl:1540.35334
- Lower bounds on the radius of analyticity for a system of nonlinear quadratic interactions of the Schrödinger-type equations, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 4, p. 14 (Id/No 136) | DOI:10.1007/s00033-024-02279-8 | Zbl:7900952
- On the radius of spatial analyticity for Ostrovsky equation with positive dispersion, Applicable Analysis, Volume 102 (2023) no. 16, pp. 4563-4580 | DOI:10.1080/00036811.2022.2122450 | Zbl:1541.35013
- Lower bounds on the radius of spatial analyticity of solution for KdV-BBM type equations, NoDEA. Nonlinear Differential Equations and Applications, Volume 30 (2023) no. 4, p. 24 (Id/No 47) | DOI:10.1007/s00030-023-00855-x | Zbl:1514.35078
- On the radius of spatial analyticity for the Klein-Gordon-Schrödinger system, Journal of Differential Equations, Volume 321 (2022), pp. 449-474 | DOI:10.1016/j.jde.2022.03.018 | Zbl:1490.35008
- On propagation of regularities and evolution of radius of analyticity in the solution of the fifth-order KdV-BBM model, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 2, p. 15 (Id/No 68) | DOI:10.1007/s00033-022-01704-0 | Zbl:1485.35004
- Lower bounds on the radius of spatial analyticity for the Kawahara equation, Analysis and Mathematical Physics, Volume 11 (2021) no. 1, p. 22 (Id/No 28) | DOI:10.1007/s13324-020-00447-3 | Zbl:1457.32021
- On the radius of spatial analyticity for defocusing nonlinear Schrödinger equations, Discrete and Continuous Dynamical Systems, Volume 40 (2020) no. 1, pp. 423-439 | DOI:10.3934/dcds.2020016 | Zbl:1516.35204
Cité par 11 documents. Sources : Crossref, zbMATH