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Abstract

We consider the initial value problem for the Dirac–Klein–Gordon equations in two space dimensions. Global regularity for 
C∞ data was proved by Grünrock and Pecher. Here we consider analytic data, proving that if the initial radius of analyticity is 
σ0 > 0, then for later times t > 0 the radius of analyticity obeys a lower bound σ(t) ≥ σ0 exp(−At). This provides information 
about the possible dynamics of the complex singularities of the holomorphic extension of the solution at time t . The proof relies 
on an analytic version of Bourgain’s Fourier restriction norm method, multilinear space–time estimates of null form type and an 
approximate conservation of charge.
© 2019 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider the Cauchy problem for the Dirac–Klein–Gordon (DKG) equations in two space dimensions,{
(−i∂t − iα · ∇ + Mβ)ψ = φβψ, ψ(0, x) = ψ0(x),

(∂2
t − � + m2)φ = 〈βψ,ψ 〉, (φ, ∂tφ)(0, x) = (φ0, φ1)(x),

(1)

where the unknowns ψ (the Dirac spinor) and φ (the meson field) are functions of (t, x) ∈R ×R2 and take values in 
C2 and R, respectively, and ψ = (ψ1, ψ2)

t is considered as a column vector upon which the Dirac matrices (in fact, 
the Pauli matrices)

α1 =
(

0 1
1 0

)
, α2 =

(
0 −i

i 0

)
and β =

(
1 0
0 −1

)
may act. The standard inner product on C2 is denoted 〈 ·, · 〉. We write x = (x1, x2), ∂j = ∂

∂xj , ∇ = (∂1, ∂2), � =
∂2

1 + ∂2
2 and α · ∇ = α1∂1 + α2∂2. The masses M and m are given real constants. We shall assume m > 0.
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In particle physics, DKG arises as a model for forces between nucleons, mediated by mesons; see [3]. The 
well-posedness of the Cauchy problem in space dimensions d ≤ 3 with data in the family of Sobolev spaces 
Hs(Rd) = Ws,2(Rd) has been extensively studied; see [9,12,11,16,21,28,2,7] and the references therein.

Our aim in this article is to add to the large-data global regularity theory in space dimension d = 2. Global regularity 
for C∞(R2) data was proved by Grünrock and Pecher [16]. Our focus here is on spatial analyticity, with a uniform 
radius of analyticity σ(t) > 0 for each time t . By this we mean that the solution at time t has a holomorphic extension 
to the complex strip

Sσ =
{
x + iy ∈C2 : x, y ∈ R2 and |y1|, |y2| < σ

}
with σ = σ(t).

Heuristically, the picture one should have in mind is that σ(t) is the distance from R2
x to the nearest complex 

singularity of the holomorphic extension of the solution at time t . We will prove a lower bound

σ(t) ≥ σ0 exp(−At)

as t → ∞, providing some information about the possible dynamics of the complex singularities.
The proof of global C∞ regularity in [16] makes use of Bourgain’s Fourier restriction norm method, and a key 

motivation behind the present paper was to investigate to which extent the analytic version of this method—introduced 
by Bourgain in [6, Section 8]—can yield refined information about the regularity of the solution for analytic data. 
A further motivation was a recent result of Cappiello, D’Ancona and Nicola [8] (see also [1]) on persistence of spatial 
analyticity for C∞ solutions of semilinear symmetric hyperbolic systems, which in the special case of DKG1 yields a 
lower bound

σ(t) ≥ σ0 exp

⎛⎝−A

t∫
0

(
1 + ‖ψ(s)‖L∞ + ‖φ(s)‖L∞ + ‖∂φ(s)‖L∞

)
ds

⎞⎠ .

This is weaker than our lower bound σ(t) ≥ σ0 exp(−At), since the best estimate known on the L∞ norm of the 
solution of (1) appears to be O(exp(Ct)), which can be obtained from the global existence proof in [16], hence one 
would get a double exponential decay rate σ(t) ≥ σ0 exp(−A exp(Ct)).

The investigation of spatially uniform lower bounds on the radius of analyticity for nonlinear evolutionary PDE was 
initiated by Kato and Masuda [19], and by now there is an extensive catalog of results along these lines for various 
nonlinear PDE, including the Kadomtsev–Petviashvili equation [6], the (generalized) Korteweg–de Vries equation 
[18,4,24], the Euler equations [20], the cubic Szegő equation [15] and the nonlinear Schrödinger equation [17,5,27].

Since the radius of analyticity can be related to the asymptotic decay of the Fourier transform, it is natural to 
use Fourier methods to study the type of problem outlined above. We take data in the analytic Gevrey class Gσ,s =
Gσ,s(R2), defined for σ > 0 and s ∈R by

Gσ,s(R2) =
{
f ∈ L2(R2) : ‖f ‖Gσ,s < ∞

}
, ‖f ‖Gσ,s = ∥∥eσ‖ξ‖〈ξ〉s f̂ (ξ)

∥∥
L2

ξ
.

Here we denote, for ξ = (ξ1, ξ2) ∈ R2,

‖ξ‖ = |ξ1| + |ξ2|, |ξ | =
(
ξ2

1 + ξ2
2

)1/2
, 〈ξ〉 = (1 + |ξ |2)1/2,

and

f̂ (ξ) =Ff (ξ) =
∫
R2

e−ix·ξ f (x) dx

is the Fourier transform. Note that Gσ,s = F−1(e−σ‖·‖〈·〉−sL2) is isometrically isomorphic to L2 and hence is a 
Banach space. We recall the fact that every f ∈ Gσ,s has a uniform radius of analyticity σ , that is, f has a holomorphic 
extension to Sσ (for a proof see, e.g., [23]).

Our main result is the following.

1 DKG can be written as a semilinear symmetric hyperbolic system with unknown u = (ψ1, ψ2, φ, ∂1φ, ∂2φ, ∂tφ)ᵀ .
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Theorem 1. Consider (1) with m > 0. Let σ0 > 0. Given initial data

(ψ0, φ0, φ1) ∈ Gσ0,0(R2;C2) × Gσ0,1/2(R2;R) × Gσ0,−1/2(R2;R), (2)

let (ψ, φ) be the unique global C∞ solution of (1), as obtained in [16]. Then for any T > 0 we have

(ψ,φ, ∂tφ) ∈ C([−T ,T ];Gσ(T ),0 × Gσ(T ),1/2 × Gσ(T ),−1/2),

where

σ(T ) = σ0e
−AT

for some constant A > 0 depending on σ0 and the norm of the data. Thus, for any time t ∈ R, the solution has a 
uniform radius of analyticity at least σ(|t |).

We have no reason to expect that this bound is optimal, but it does appear to be the best possible with the technique 
used in the proof, which is based on an analytic version of Bourgain’s Fourier restriction norm method, multilinear 
space–time estimates of null form type and an approximate version of the conservation of charge∫

R2

|ψ(t, x)|2 dx = const. (3)

We now describe in more detail the method of proof. The point of departure is the observation that the norm on 
Gσ,s is obtained from the Sobolev norm

‖f ‖Hs = ∥∥〈ξ〉s f̂ (ξ)
∥∥

L2
ξ

by the substitution

f −→ eσ‖D‖f =F−1
(
eσ‖·‖Ff

)
.

Applying the same substitution in the setting of Bourgain’s Fourier restriction norm method, the space Xs,b then 
yields the analytic space Xσ,s,b. This idea was used by Bourgain [6, Theorem 8.12] to study spatial analyticity for the 
Kadomtsev–Petviashvili equation, but the argument applies to a class of dispersive PDE in general, as discussed in 
[23]. In brief summary, the consequences that can be abstracted from Bourgain’s argument are the following.

(B1) If local well-posedness of some nonlinear dispersive PDE can be proved for Hs initial data by a contraction 
argument in Xs,b, then one also has local well-posedness for data in Gσ0,s for any σ0 > 0.

(B2) If, moreover, the solution extends globally in time (so the Hs norm does not blow up in finite time), then the 
solution remains spatially analytic for all time, but no lower bound is obtained on σ(t) > 0 as t → ∞.

An additional observation, proved in [23], is that:

(B3) If the Hs norm is conserved, then σ(t) ≥ σ0 exp(−At) is obtained.

We emphasize that (B3) does not apply to DKG, since there is no conservation law for the field φ. Thus a more 
involved argument is needed to prove our main result. The first and easiest step of the proof is to use the idea behind 
(B1) to obtain a local well-posedness result for data (2), analogous to the local result from [16] with Hs data. To reach 
any time T > 0, we then iterate the local result, and to control the growth of the data norms in each step we rely on 
an approximate conservation law for ψ(t, ·) in Gσ,0, involving the parameter σ > 0 and reducing to the conservation 
law (3) in the limit σ → 0. Superficially, this parallels the approach used by Tesfahun and the author in [25] for the 
1d DKG problem, for which an algebraic lower bound was obtained, but the function spaces and estimates are much 
more involved in the 2d case. See Remark 2 below for an explanation of why we only get an exponential lower bound 
instead of an algebraic one in 2d. In 3d, on the other hand, global C∞ regularity for large data remains an open 
problem.

We now turn to the proof of Theorem 1. Since m > 0, we may assume m = 1 by a rescaling.
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The paper is organized as follows. In the next section we reformulate the system in a way which makes it easy to 
see the null structure. In Section 3 we state the analytic local existence theorem and the approximate conservation law 
and prove that they imply the main result, Theorem 1. In Section 4 we introduce the function spaces that we use. In 
Section 5 we prove some multilinear space–time estimates of null-form type, which are then used to prove the local 
existence in Section 6 and the approximate conservation law in Section 7.

2. Reformulation of the system

Set D = ∇/i. For a given function ξ �→ h(ξ) on R2 we denote by h(D) the Fourier multiplier defined by

h(D)f =F−1(h(ξ)Ff (ξ)
)
.

Using the Dirac projections


± = 
(±D), 
(ξ) = 1

2

(
I + ξ

|ξ | · α
)

we now write

ψ = ψ+ + ψ−, where ψ± = 
±ψ.

Further we set

φ = 1

2
(φ+ + φ−) , where φ± = φ ± i〈D〉−1∂tφ,

and note that φ = Reφ+, since φ is real valued (hence so is 〈D〉−1∂tφ). Since

|D|
+ − |D|
− = −iα · ∇ + β,

one then obtains the following formulation of (1) (with m = 1):⎧⎪⎨⎪⎩
(−i∂t + |D|)ψ+ = 
+

(−Mβψ + (Reφ+)βψ
)
, ψ+(0, x) = f+(x),

(−i∂t − |D|)ψ− = 
−
(−Mβψ + (Reφ+)βψ

)
, ψ−(0, x) = f−(x),

(−i∂t + 〈D〉)φ+ = 〈D〉−1〈βψ,ψ 〉, φ+(0, x) = g+(x),

(4)

where f± = 
±ψ0 and g+ = φ0 + i〈D〉−1φ1.
As shown in [12], each bilinear term in (4) has a spinorial null structure encoded in the estimate


(−s2η)
(s1ξ) = O(� (s1ξ, s2η)), (5)

where ξ, η ∈R2, s1, s2 ∈ {+, −} and −s1 denotes the reverse sign of s1. This estimate will be used in tandem with the 
sign-reversing identity


(ξ)β = β
(−ξ). (6)

3. Proof of the main theorem

In this section we first state the analytic local existence theorem and the approximate conservation law, and then 
we show that they imply the main result, Theorem 1.

We start with the local existence result (the proof is given in Section 6).

Theorem 2. There exists a constant c0 > 0 such that for any σ0 ≥ 0 and any data

(f+, f−, g+) ∈ X0 := Gσ0,0(R2;C) × Gσ0,0(R2;C) × Gσ0,1/2(R2;C), (7)

the Cauchy problem (4) has a unique solution

(ψ+,ψ−, φ+) ∈ C([−δ, δ];X0)
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on (−δ, δ) ×R2, where

δ = c0

1 + ‖f+‖2
Gσ0,0 + ‖f−‖2

Gσ0,0 + ‖g+‖2
Gσ0,1/2

.

Remark 1. The uniqueness is immediate since the solution is certainly C∞.

Remark 2. If the dependence of the local existence time in Theorem 2 could be improved to

δ = c0

1 + ‖f+‖2
Gσ0,0 + ‖f−‖2

Gσ0,0 + ‖g+‖ρ

Gσ0,1/2

for some ρ < 2, then the argument in subsection 3.1 below would give an algebraic lower bound on σ(t) instead of 
an exponential one. But in order to get the improved existence time we would need to improve the estimate (34) used 
in the proof of the local existence theorem, more precisely the factor δ1/2 in that estimate would have to be replaced 
by δ1/ρ , and in view of (38) this does not seem possible using the (sharp) estimates in Theorem 4.

The conservation of charge∫
|ψ(t, x)|2 dx =

∫ (
|ψ+(t, x)|2 + |ψ−(t, x)|2

)
dx = const.

does not hold for � = eσ‖D‖ψ with σ > 0, but we can nevertheless obtain an approximate conservation law. Indeed, 
we have the following (proved in Section 7).

Theorem 3. Let σ0 > 0. Consider the local solution from Theorem 2, with time of existence δ > 0, and define

Mσ (t) = ‖ψ+(t, ·)‖2
Gσ,0 + ‖ψ−(t, ·)‖2

Gσ,0 ,

Nσ (t) = ‖φ+(t, ·)‖Gσ,1/2 ,

for t ∈ [0, δ] and σ ∈ [0, σ0]. Assume a ∈ (1/4, 1/2] and set

p = min
(
a,3(a − 1/4)

)
. (8)

Then for all σ ∈ [0, σ0] we have

sup
t∈[0,δ]

Mσ (t) ≤ Mσ (0) + cδpσ 1/2−aMσ (0)
(
Mσ (0)1/2 +Nσ (0)

)
, (9)

sup
t∈[0,δ]

Nσ (t) ≤ Nσ (0) + cδ1/2 ‖ψ(0, ·)‖2
L2 + cδpσ 1/2−aMσ (0), (10)

where the constant c > 0 depends only on a and M .

We now have all the tools needed to prove the main result, Theorem 1.

3.1. Proof of Theorem 1

Without loss of generality we restrict attention to t ≥ 0. We must prove the lower bound σ(t) ≥ σ0e
−At for all 

t ≥ 0, for some constant A > 0 depending on σ0 and the norm of the data. But by Theorem 2 there exists t0 > 0 such 
that σ(t) ≥ σ0 for all t ∈ [0, t0], hence it suffices to show a lower bound σ(t) ≥ ce−Bt for some constants c, B > 0
depending on σ0 and the data norm. We split the proof into two steps.

Fix a ∈ (1/4, 1/2), define p by (8) and set q = 1/2 − a and r = (3/2 − p)/q . Let c0 and c be the constants from 
Theorems 2 and 3. We will denote by

K = ‖ψ0‖2
L2

the conserved charge (3). We fix R0 ≥ 1 so large that σq
R

3/2−p ≥ 1, cc1/2
K ≤ R0 and 113/2cc

p ≤ R0.
0 0 0 0
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3.1.1. Step 1
Let R ≥ R0 be so large that

Mσ0(0) +Nσ0(0)2 ≤ R,

and set

δ = c0

12R
,

where c0 is as in the local existence theorem, Theorem 2. Iterating that result, with σ0 replaced by a parameter 
σ ∈ (0, σ0], we cover successive time intervals [0, δ], [δ, 2δ] etc. In fact, we choose σ so that σqR3/2−p = 1, that is,

σ = R−r = R−(3/2−p)/q .

Proceeding inductively, let us assume that for some n ∈N we have

sup
t∈[0,(n−1)δ]

(
Mσ (t) +Nσ (t)2

)
≤ 11R.

Then by Theorem 2 (with σ0 replaced by σ ) we can extend the solution to [0, nδ], and by Theorem 3,

sup
t∈[0,nδ]

Mσ (t) ≤Mσ (0) + ncδpσq(11R)3/2,

sup
t∈[0,nδ]

Nσ (t) ≤Nσ (0) + ncKδ1/2 + ncδpσq11R.

Since Mσ (0) ≤ Mσ0(0) ≤ R and Nσ (0) ≤ Nσ0(0) ≤ R1/2, we then get

sup
t∈[0,nδ]

Mσ (t) ≤ R + ncδpσq(11R)3/2,

sup
t∈[0,nδ]

Nσ (t) ≤ R1/2 + ncKδ1/2 + ncδpσq11R.

Thus, if

ncδpσq113/2R1/2 ≤ 1 and ncKδ1/2 ≤ R1/2, (11)

it follows that

sup
t∈[0,nδ]

(
Mσ (t) +Nσ (t)2

)
≤ 11R.

Note that (11) certainly holds for n = 1, by the choice σ = R−r , R ≥ R0 and the assumptions on R0.
Setting T = nδ and using δ = c0/12R and σqR3/2−p = 1, we rewrite (11) as

T · max

(
113/2c

( c0

12

)p−1
, c

( c0

12

)−1/2
K

)
≤ 1.

The induction stops at time T = nδ, where n is the largest natural number such that (11) holds. It follows that

T ≥ T0 := 1

2μ
, where μ = max

(
113/2c

( c0

12

)p−1
, c

( c0

12

)−1/2
K

)
> 0.

Indeed, since (11) fails when n is replaced by n + 1, we have 1 < (T + δ)μ ≤ 2T μ.
To summarize, what we have proved in Step 1 is that there exists T0 > 0, depending only on a, μ and the conserved 

charge, such that for any R ≥ R0 and for any data at t = 0 satisfying Mσ0(0) +Nσ0(0)2 ≤ R, the solution has radius 
of analyticity at least σ = R−r for all t ∈ [0, T0], and we have the final-time bound Mσ (T0) +Nσ (T0)

2 ≤ 11R.
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3.1.2. Step 2
We iterate the result of Step 1. Proceeding inductively we cover intervals [(n −1)T0, nT0] for n = 1, 2, . . . , on each 

of which the radius of analyticity is at least

σ = σn = (11n−1R)−r

and we have the final-time bound

Mσn(nT0) +Nσn(nT0)
2 ≤ 11nR.

Thus

σ(t) ≥ R−re−(ln 11/T0)t

for t ≥ 0, as desired. This concludes the proof of Theorem 1.

4. Function spaces

We impose the convention that the letters N and L (and indexed versions of these) denote elements of the set of 
dyadic numbers 2N0 = {2n : n ∈N0}, and that sums, unions and supremums over N or L are tacitly understood to be 
restricted to this set. Define disjoint dyadic sets SN by

S1 = (−1,1), S2n = (−2n,−2n−1] ∪ [2n−1,2n) for n = 1,2, . . . ,

so that R = ∪NSN .
Note that each equation in (4) is of the form (−i∂t + h(D))u = F , with h(ξ) = ±|ξ | or ±〈ξ 〉. In general, given a 

continuous h : R2 → R of polynomial growth we consider the family of norms, for σ ≥ 0, s, b ∈ R and 1 ≤ p < ∞,

‖u‖
X

σ,s,b;p
h(ξ)

=
(∑

L

Lbp
∥∥∥eσ‖ξ‖〈ξ〉sχSL

(τ + h(ξ))̂u(τ, ξ)

∥∥∥p

L2
τ,ξ

)1/p

,

and for p = ∞,

‖u‖
X

σ,s,b;∞
h(ξ)

= sup
L

Lb
∥∥∥eσ‖ξ‖〈ξ〉sχSL

(τ + h(ξ))̂u(τ, ξ)

∥∥∥
L2

τ,ξ

.

Here χSL
denotes the characteristic function of SL and

û(τ, ξ) =Fu(τ, ξ) =
∫

R×R2

e−i(tτ+x·ξ)u(t, x) dt dx (τ ∈R, ξ ∈R2)

is the space–time Fourier transform. The above norms are the analytic counterparts of the norms used in [16], the only 
difference being that we insert the exponential factor eσ‖ξ‖.

Definition 1. Let σ ≥ 0, s, b ∈ R and 1 ≤ p ≤ ∞. The space Xσ,s,b;p
h(ξ) is the set of u ∈ S ′(R1+2) such that û ∈

L1
loc(R

1+2) and ‖u‖
X

σ,s,b;p
h(ξ)

< ∞. In the case σ = 0 we simplify the notation to Xs,b;p
h(ξ) = X

0,s,b;p
h(ξ) .

We define multipliers PN and QL = Q
h(ξ)
L by

P̂Nu(τ, ξ) = χSN
(|ξ |)̂u(τ, ξ),

Q̂Lu(τ, ξ) = χSL
(τ + h(ξ))̂u(τ, ξ).

We also write Q≤L0 = ∑
L≤L0

QL and Q>L0 = Id − Q≤L0 , and similarly for P . For convenience we shall use the 
shorthand uN = PNu, uL = QLu and uN,L = PNQLu.

It is easy to see that the norms corresponding to h(ξ) = ±|ξ | and h(ξ) = ±〈ξ 〉 are comparable. The spaces Xσ,s,b;p
±|ξ |

and Xσ,s,b;p
±〈ξ〉 therefore coincide and have equivalent norms, so for our purposes they can be used interchangeably and 

we will denote either of them by Xσ,s,b;p
± . We will also write Q± = Q

±|ξ |.
L L
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We now discuss the main properties of the above spaces. For this purpose it is just as well to work in the general 
setting of a given continuous h : R2 → R of polynomial growth, and for the remainder of this section we fix such a 
function.

Lemma 1. Xσ,s,b;p
h(ξ) is a Banach space.

Proof. It suffices to exhibit an isometric isomorphism u �→ g = (gL)L∈2N0 from Xσ,s,b;p
h(ξ) onto a closed subspace M

of lp(2N0; Y), where Y = L2(e2σ‖ξ‖〈ξ〉2s dτ dξ). The map is given by gL(τ, ξ) = LbûL(τ, ξ), and M is the subspace 
of all g = (gL) ∈ lp(2N0; Y) such that each gL is supported in AL = {(τ, ξ) : τ + h(ξ) ∈ SL}.

To prove that the map is onto M, let g ∈M and define U : R1+2 →C by U(τ, ξ) = L−bgL(τ, ξ) for (τ, ξ) ∈ AL. 
By the assumption that h(ξ) has polynomial growth, it is easy to see that U is a tempered function, hence u =F−1U

is well defined and belongs to Xσ,s,b;p
h(ξ) . �

Lemma 2. Xσ,s,1/2;1
h(ξ) embeds continuously into C(R; Gσ,s).

Proof. This follows from

‖u(t)‖Gσ,s ≤
∑
L

∥∥∥∥eσ‖ξ‖〈ξ〉s
∫

|ûL(τ, ξ)|dτ

∥∥∥∥
L2

ξ

≤
∑
L

L1/2
∥∥∥eσ‖ξ‖〈ξ〉s ûL(τ, ξ)

∥∥∥
L2

τ,ξ

.

Similarly, we bound ‖u(t + h) − u(t)‖Gσ,s by the right-hand side with the factor eiτh − 1 inserted in the L2
τ,ξ norm, 

and the resulting expression converges to zero as h → 0, by the dominated convergence theorem. �
Lemma 3. Assume 1 ≤ p < ∞ and let u ∈ X

σ,s,b;p
h(ξ)

. Then u = ∑
L uL and u = ∑

N,L uN,L hold in Xσ,s,b;p
h(ξ)

. If p = ∞, 
the convergence holds in S ′.

Proof. The Fourier transforms of u −∑
L≤L0

QLu and u −∑
N≤N0

∑
L≤L0

PNQLu equal ̂u multiplied by the char-
acteristic functions of the regions, respectively, (i) |τ + h(ξ)| ≥ L0 and (ii) |τ + h(ξ)| ≥ L0 or |ξ | ≥ N0. If p < ∞, 
the Xσ,s,b;p

h(ξ) norm is therefore bounded by⎛⎝ ∑
L≥L0

Lbp
∥∥∥eσ‖ξ‖〈ξ〉s ûL

∥∥∥p

L2

⎞⎠1/p

+
⎛⎝ ∑

L<L0

Lbp
∥∥∥eσ‖ξ‖〈ξ〉sχ|ξ |≥N0 ûL

∥∥∥p

L2

⎞⎠1/p

,

and these terms are arbitrarily small for L0 and N0 large enough, by the dominated convergence theorem. If p = ∞, 
the convergence in S ′ follows from dominated convergence on the Fourier side of the Plancherel identity (see (12)
below) when u is tested on any v ∈ S . �

We remark that the Schwartz class S(R1+2) is contained in Xσ,s,b;p
h(ξ) if σ = 0, but not if σ > 0. Recall that we 

simplify the notation to X0,s,b;p
h(ξ) = X

s,b;p
h(ξ) when σ = 0. We now prove some density and duality results for this case.

Lemma 4. S is dense in Xs,b;p
h(ξ) if 1 ≤ p < ∞, but not if p = ∞.

Proof. If 1 ≤ p < ∞ and u ∈ X
s,b;p
h(ξ) , then by Lemma 3, v = ∑

L≤L0
uL can be made arbitrarily close to u in Xs,b;p

h(ξ)

by choosing L0 large enough. But the index set of L now being finite, v̂ belongs to L2(〈ξ〉2s dτ dξ), in which S is 
dense. Moreover, approximating ̂v from S in L2(〈ξ〉2s dτ dξ), one approximates also in Xs,b;p

h(ξ) .

If p = ∞, set ̂u(τ, ξ) = 〈τ 〉−b−1/2χS1(|ξ |). Then Lb ‖〈ξ〉s ûL‖L2 ∼ 1 for large L, so u ∈ X
s,b;∞
h(ξ) . Moreover, for any 

v ∈ S we have Lb ‖〈ξ〉s(ûL − v̂L)‖L2 � 1 for large L, so approximation from S is impossible in Xs,b;∞. �
h(ξ)
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A duality pairing between Xs,b;p
h(ξ) and X−s,−b;p′

h(ξ) can be defined in a natural way as an extension of the pairing 
sending (u, v) ∈ S ′ × S to∫

uv dt dx = (2π)−3
∫

û(τ, ξ )̂v(τ, ξ) dτ dξ, (12)

where equality holds by Plancherel’s theorem. But the right side is well defined as an absolutely convergent integral 
for any (u, v) ∈ X

s,b;p
h(ξ) × X

−s,−b;p′
h(ξ) , since by Cauchy–Schwarz and Hölder we can bound in absolute value by∑

L

∥∥∥〈ξ〉sLbûL(τ, ξ)

∥∥∥
L2

∥∥∥〈ξ〉−sL−bv̂L(τ, ξ)

∥∥∥
L2

≤ ‖u‖
X

s,b;p
h(ξ)

‖v‖
X

−s,−b;p′
h(ξ)

. (13)

For (u, v) ∈ X
s,b;p
h(ξ) × X

−s,−b;p′
h(ξ) we can therefore consistently define 

∫
uv dt dx by (12). This bilinear pairing is 

bounded, and hence continuous, in view of (13). With this definition, we have the following.

Lemma 5. Let 1 ≤ p ≤ ∞. For any u ∈ X
s,b;p
h(ξ) we have

‖u‖
X

s,b;p
h(ξ)

= sup

{
(2π)3

∣∣∣∣∫ uv dt dx

∣∣∣∣ : v ∈ X
−s,−b;p′
h(ξ) , ‖v‖

X
−s,−b;p′
h(ξ)

= 1

}
, (14)

where 1 ≤ p′ ≤ ∞ is the Hölder conjugate of p, defined by 1
p

+ 1
p′ = 1. Moreover, the set over which the supremum 

is taken can be further restricted as follows:

(i) if p > 1, we can restrict to v ∈ S;
(ii) if p < ∞, we can restrict to v such that ̂v ∈ L2 with compact support.

Proof. By (12) and (13), LHS (14) ≥ RHS (14). Conversely, if 1 ≤ p < ∞, then defining v by

v̂L(τ, ξ) = 〈ξ〉2sL2bûL(τ, ξ)∥∥〈·〉sLbûL

∥∥2−p

L2 ‖u‖p/p′
X

s,b;p
h(ξ)

(15)

for all L for which 
∥∥〈·〉sLbûL

∥∥
L2 > 0, and v̂L(τ, ξ) = 0 for all other L, we have ‖v‖

X
−s,−b;p′
h(ξ)

= 1 (we assume of 

course that LHS (14) is not zero) and equality holds in (14). If p = ∞, then fixing L and defining v by

v̂(τ, ξ) = 〈ξ〉2sL2bûL(τ, ξ)∥∥〈·〉sLbûL

∥∥
L2

we have ‖v‖
X

−s,−b;1
h(ξ)

= 1 and (2π)3
∫

uv dt dx = ∥∥〈·〉sLbûL

∥∥
L2 . It follows that RHS (14) ≥ ∥∥〈·〉sLbûL

∥∥
L2 for all L, 

hence RHS (14) ≥ ‖u‖
X

s,b;∞
h(ξ)

. This concludes the proof of (14). The claim (i) follows since S is dense in X−s,−b;p′
h(ξ)

for p′ < ∞. Finally, to prove (ii) we assume p < ∞ and note that by Lemma 3 we can reduce to the case where ̂u has 
compact support, hence ̂v given by (15) also has compact support. Moreover, ̂v ∈ L2. �

The restriction of Xσ,s,b;p
h(ξ) to a time interval (−δ, δ) is denoted Xσ,s,b;p

h(ξ) (δ). It can be viewed as the quotient space 

X
σ,s,b;p
h(ξ) /M, where M is the closed subspace consisting of those u ∈ X

σ,s,b;p
h(ξ) which vanish on (−δ, δ) × R2. The 

norm

‖u‖
X

σ,s,b;p
h(ξ)

(δ)
= inf

{
‖v‖

X
σ,s,b;p
h(ξ)

: v ∈ X
σ,s,b;p
h(ξ) , u = v on (−δ, δ) ×R2

}
(16)

makes Xσ,s,b;p
h(ξ) (δ) a Banach space. As before, we write X0,s,b;p

h(ξ) (δ) = X
s,b;p
h(ξ) (δ).

Lemma 6. Let σ ≥ 0, s ∈ R, 0 < b ≤ 1/2 and 0 < δ ≤ 1. Then

‖u‖
X

σ,s,b;1
h(ξ)

(δ)
≤ cδ1/2−b ‖u‖

X
σ,s,1/2;1
h(ξ)

(δ)
,

where c depends only on b.
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Proof. Replacing u by eσ‖D‖〈D〉su we reduce to the case σ = s = 0, which is proved in [16, Proposition 2.1(iii)]. �
Lemma 7. Let s ∈ R, −1/2 < b < 1/2, 1 ≤ p < ∞ and 0 < δ ≤ 1. Then for any time interval I ⊂ [−δ, δ] we have 
the estimate

‖χIu‖
X

s,b;p
h(ξ)

≤ c ‖u‖
X

s,b;p
h(ξ)

(δ)
, (17)

where χI (t) is the characteristic function of I , and c depends only on b.

Proof. In view of the definition (16) of the restriction norm, it suffices to prove

‖χIu‖
X

s,b;p
h(ξ)

≤ c ‖u‖
X

s,b;p
h(ξ)

.

We adapt an argument from [10, Lemma 3.2]. Since p < ∞, S is dense in Xs,b;p
h(ξ) by Lemma 4, so it is enough to prove 

the estimate for u ∈ S . Replacing u by 〈D〉su, we may assume s = 0. Writing χI (t) in terms of signum functions and 
applying Lemma 5, we then reduce to proving∣∣∣∣∫ sgn(t)u(t, x)v(t, x) dt dx

∣∣∣∣ ≤ c ‖u‖
X

0,b;p
h(ξ)

‖v‖
X

0,−b;p′
h(ξ)

(18)

for u ∈ S and v ∈ X
0,−b;p′
h(ξ)

∩ L2. We bound the left side by∑
L1,L2

∣∣∣∣∫ sgn(t)uL1(t, x)vL2(t, x) dt dx

∣∣∣∣
and separate the cases L1 ∼ L2, L1 � L2 and L2 � L1. For L1 ∼ L2 we bound by∑

L1∼L2

∥∥uL1

∥∥
L2

∥∥vL2

∥∥
L2 ∼

∑
L1∼L2

Lb
1

∥∥uL1

∥∥
L2 L−b

2

∥∥vL2

∥∥
L2 � ‖u‖

X
0,b;p
h(ξ)

‖v‖
X

0,−b;p′
h(ξ)

,

while for L1 � L2 we write∫
sgn(t)uL1(t, x)vL2(t, x) dt dx = lim

n→∞

∫
φ

(
t

n

)
uL1(t, x)vL2(t, x) dt dx

= c lim
n→∞

∫
nφ̂(n[τ − λ])ûL1(λ, ξ)v̂L2(τ, ξ) dλdτ dξ,

where φ(t) = sgn(t)χ[−1,1](t) has Fourier transform φ̂(τ ) = O(|τ |−1) and

|τ − λ| = |(τ + h(ξ)) − (λ + h(ξ))| ∼ L2,

hence we dominate in this case by∑
L1�L2

L−1
2

∫
|ûL1(λ, ξ)||v̂L2(τ, ξ)|dλdτ dξ

≤ c
∑

L1�L2

(
L1

L2

)1/2 ∫ ∥∥ûL1(λ, ξ)
∥∥

L2
λ

∥∥v̂L2(τ, ξ)
∥∥

L2
τ

dξ

≤ c
∑

L1�L2

(
L1

L2

)1/2−b

Lb
1

∥∥ûL1

∥∥
L2 L−b

2

∥∥v̂L2

∥∥
L2

≤ c

∞∑
l=0

∞∑
j=0

2−lεαjβj+l ≤ c ‖α‖lp ‖β‖
lp

′ = c ‖u‖
X

0,b;p
h(ξ)

‖v‖
X

0,−b;p′
h(ξ)

,

where ε = 1/2 − b > 0, L1 = 2j , L2 = 2j+l , αj = Lb
1

∥∥ûL1

∥∥
L2 and βj+l = L−b

2

∥∥v̂L2

∥∥
L2 . Here we used b < 1/2. The 

remaining case L2 � L1 works out similarly, but relies on −b < 1/2. �
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In terms of the free propagator U(t) = e−ith(D) the solution of

(−i∂t + h(D))u = F, u(0, x) = f (x), (19)

is given, for sufficiently regular F(t, x) and f (x), by Duhamel’s formula

u(t) = U(t)f + i

t∫
0

U(t − t ′)F (t ′) dt ′, (20)

and satisfies the following estimate.

Lemma 8. Let σ ≥ 0, s ∈R, −1/2 < b < 1/2 and 0 < δ ≤ 1. For any f ∈ Gσ,s and F ∈ X
σ,s,b;∞
h(ξ) (δ) there is a unique 

u ∈ X
σ,s,1/2;1
h(ξ) (δ) satisfying the initial value problem (19) on (−δ, δ) ×R2. Moreover,

‖u‖
X

σ,s,1/2;1
h(ξ)

(δ)
≤ c

(
‖f ‖Gσ,s + δ1/2+b ‖F‖

X
σ,s,b;∞
h(ξ)

(δ)

)
, (21)

where c depends only on b.

Proof. By the substitution u → eσ‖D‖〈D〉su we reduce to the case σ = s = 0. The proof now follows more or less 
along the lines of the proof of the analogous result for the standard Xs,b = Xs,b;2 spaces, but some care must be taken 
since S is not dense in X0,b;∞

h(ξ) . Assuming for the moment F ∈ S , then (20) can be rewritten, via the Fourier transform, 
as

u(t) = U(t)f + (T F )(t),

where

(T F )(t) =
∞∑

n=1

tn

n!U(t)fn + U(t)g +F−1
(F{QL>δ−1F }(τ, ξ)

τ + h(ξ)

)
,

f̂n(ξ) = c

∫
(τ + h(ξ))n−1F{QL≤δ−1F }(τ, ξ) dτ,

ĝ(ξ) = c

∫
(τ + h(ξ))−1F{QL>δ−1F }(τ, ξ) dτ.

Now one observes that T F is well-defined for any F ∈ X
0,b;∞
h(ξ) and that (21) holds; see [13, Section 13.2]. However, 

it is not obvious that T F then satisfies (19) with f = 0. But choosing b′ ∈ (−1/2, b) we have F ∈ X
0,b;∞
h(ξ) ⊂ X

0,b′;2
h(ξ) . 

In the latter space, S is dense, and by a well-known result the linear operator T is bounded from X0,b′;2
h(ξ) (δ) into 

X
0,b′+1;2
h(ξ) (δ) and T F satisfies (19) on (−δ, δ) ×R2 with f = 0. �

Corollary 1. Under the assumptions of Lemma 8 we have

sup
t∈[−δ,δ]

‖u(t)‖Gσ,s ≤ ‖f ‖Gσ,s + cδ1/2+b ‖F‖
X

σ,s,b;∞
h(ξ)

(δ)
.

Proof. For the first term in (20) we use ‖U(t)f ‖Gσ,s ≤ ‖f ‖Gσ,s , and for the second term we use Lemma 2 and 
Lemma 8. �
5. Multilinear space–time estimates

Estimating the solution of (4) via duality (Lemma 5), the need arises for the following trilinear space–time esti-
mates, which we shall prove by combining dyadic bilinear L2 space–times estimates (stated in Lemma 9 below) with 
the null form estimate (5). The special case σ = 0, a = 1/2 and b0 = b1 = b2 = 1/3 of the following theorem was 
proved in [16].
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Theorem 4. Assume that

• a ∈ (1/4, 3/4],
• b0, b1, b2 ≥ max(1/4, 3/4 − a),
• b0 + b1 + b2 ≥ 3/2 − a.

Then there exists a constant c > 0 such that the following estimates hold for all signs s0, s1, s2 ∈ {+, −} and for all 
σ ≥ 0:∣∣∣∣∣∣∣

∫
R1+2

(
eσ‖D‖φ

)
〈β
s1ψ1,
s2ψ2 〉dt dx

∣∣∣∣∣∣∣ ≤ c ‖φ‖
X

0,a,b0;1
s0

‖ψ1‖
X

σ,0,b1;1
s1

‖ψ2‖
X

σ,0,b2;1
s2

, (22)

∣∣∣∣∣∣∣
∫

R1+2

φ〈β
s1ψ1,
s2e
σ‖D‖ψ2 〉dt dx

∣∣∣∣∣∣∣ ≤ c ‖φ‖
X

σ,a,b0;1
s0

‖ψ1‖
X

σ,0,b1;1
s1

‖ψ2‖
X

0,0,b2;1
s2

. (23)

The proof is given at the end of this section. Before proceeding we record the following consequence of Theorem 4.

Corollary 2. Under the assumptions of Theorem 4 there exists c > 0 such that for all σ ≥ 0, δ ∈ (0, 1] and signs 
s0, s1, s2 ∈ {+, −} we have the estimates∥∥〈β
s1ψ1,
s2ψ2 〉∥∥

X
σ,−a,−b0;∞
s0 (δ)

≤ cδ1−b1−b2 ‖ψ1‖X
σ,0,1/2;1
s1 (δ)

‖ψ2‖X
σ,0,1/2;1
s2 (δ)

,∥∥
s2

(
φβ
s1ψ1

)∥∥
X

σ,0,−b2;∞
s2 (δ)

≤ cδ1−b0−b1 ‖φ‖
X

σ,a,1/2;1
s0 (δ)

‖ψ1‖X
σ,0,1/2;1
s1 (δ)

.

Proof. We only give the details for the first estimate. By Lemma 6 we reduce to∥∥〈β
s1ψ1,
s2ψ2 〉∥∥
X

σ,−a,−b0;∞
s0 (δ)

≤ c ‖ψ1‖
X

σ,0,b1;1
s1 (δ)

‖ψ2‖
X

σ,0,b2;1
s2 (δ)

.

Working with extensions, we note that it suffices to prove the estimate without the restriction to the time interval 
(−δ, δ). Thus we need to prove∥∥〈β
s1ψ1,
s2ψ2 〉∥∥

X
σ,−a,−b0;∞
s0

≤ c ‖ψ1‖
X

σ,0,b1;1
s1

‖ψ2‖
X

σ,0,b2;1
s2

,

but this follows from Theorem 4 via Lemma 5. �
There is no L4 space–time estimate for free solutions of the wave equation in two space dimensions, and hence 

no L2 product estimate. As observed in [22], one can nevertheless prove Fourier restriction estimates on truncated 
thickened null cones in space–time, such as the ones in the following lemma, which will be used to prove Theorem 4.

Some notation: Given dyadic numbers N0, N1, N2, L0, L1, L2 ≥ 1, we denote by Lmin, Lmed and Lmax the min-
imum, median and maximum of L0, L1 and L2, and similarly for the N ’s. Moreover, for j, k ∈ {0, 1, 2}, j < k, we 
denote by Ljk

min (resp. Ljk
max) the minimum (resp. the maximum) of Lj and Lk , and similarly for the N ’s. We also 

write N = (N0, N1, N2) and L = (L0, L1, L2). We will use the notation N � N ′, N � N ′ and N ∼ N ′ as shorthand 
for, respectively, N ≤ cN ′, N ≤ c−1N ′ and c−1N ′ ≤ N ≤ cN ′, where c is a sufficiently large absolute constant. From 
now on we use the notation Q±

L for the modulation operator Q±|ξ |
L defined in the previous subsection (note that we 

could also have used Q±〈ξ〉
L ).

Lemma 9. There exists c > 0 such that for all dyadic numbers Nj, Lj ≥ 1, j, k ∈ {0, 1, 2}, and all signs s0, s1, s2 ∈
{+, −} we have the bilinear L2 space–time estimate∥∥∥PN0Q

s0
L0

(
PN1Q

s1
L1

u1 · PN2Q
s2
L2

u2

)∥∥∥
L2(R1+2)

≤ C(N,L)‖u1‖L2(R1+2) ‖u2‖L2(R1+2) ,

where
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C(N,L) = c min
[(

(Nmin)
2Lmin

)1/2
,
(
NminL

12
min

)1/2(
N12

minL
12
max

)1/4
,(

NminL
01
min

)1/2(
N01

minL
01
max

)1/4
,
(
NminL

02
min

)1/2(
N02

minL
02
max

)1/4
]
.

Moreover, in the case s1 = s2 and N0 � N1 ∼ N2, the above estimate holds also with C(N, L) = c(N0L1L2)
1/2.

Proof. The estimate is proved in [22, Theorem 2.1], except for the last statement about the special case s1 = s2 and 
N0 � N1 ∼ N2, which is included in [26, Proposition 9.1, Eq. (66)] or alternatively can be deduced from the free-wave 
estimate in [14, Theorem 12.1, Eq. (65)] via the transfer principle (by observing that the multiplier D− is of size λ, in 
the notation of that paper). �
Remark 3. By Plancherel’s theorem, the estimate in Lemma 9 is equivalent to

‖I (τ, ξ)‖L2
τ,ξ

≤ C(N,L)‖u1‖L2(R1+2) ‖u2‖L2(R1+2) ,

where

I (τ, ξ) = χSN0
(|ξ |)χSL0

(τ + s0|ξ0|)
×

∫ ∣∣∣ ̂PN1Q
s1
L1

u1(τ − λ, ξ − η)

∣∣∣ ∣∣∣ ̂PN2Q
s2
L2

u2(λ, η)

∣∣∣ dλdη,

and it is in this form that we will now apply the estimate.

We are now in a position to prove the trilinear estimates.

5.1. Proof of Theorem 4

Using Plancherel’s theorem, the self-adjointness of 
(ξ), the sign-reversing identity (6) and the null estimate (5), 
we bound the left side of (22) by∣∣∣∣∫ eσ‖ξ‖φ̂(τ, ξ)

〈
β
(s1(η − ξ)) ψ̂1(λ − τ, η − ξ),
(s2η) ψ̂2(λ, η)

〉
dλdτ dη dξ

∣∣∣∣
=

∣∣∣∣∫ eσ‖ξ‖φ̂(τ, ξ)
〈

(s2η)β
(s1(η − ξ)) ψ̂1(λ − τ, η − ξ), ψ̂2(λ, η)

〉
dλdτ dη dξ

∣∣∣∣
=

∣∣∣∣∫ eσ‖ξ‖φ̂(τ, ξ)
〈
β
(−s2η)
(s1(η − ξ)) ψ̂1(λ − τ, η − ξ), ψ̂2(λ, η)

〉
dλdτ dη dξ

∣∣∣∣
≤ c

∫
θ12

∣∣φ̂(τ, ξ)
∣∣ eσ‖η−ξ‖ ∣∣ψ̂1(λ − τ, η − ξ)

∣∣ eσ‖η‖ ∣∣ψ̂2(λ, η)
∣∣ dλdτ dη dξ,

where

θ12 = � (s1(η − ξ), s2η) (24)

and we used the triangle inequality to write

eσ‖ξ‖ ≤ eσ‖η−ξ‖eσ‖η‖.
Similarly, the left side of (23) can be bounded by

c

∫
θ12e

σ‖ξ‖ ∣∣φ̂(τ, ξ)
∣∣ eσ‖η−ξ‖ ∣∣ψ̂1(λ − τ, η − ξ)

∣∣ ∣∣ψ̂2(λ, η)
∣∣ dλdτ dη dξ.

Thus both (22) and (23) reduce to the estimate (without σ )∫
θ12

∣∣φ̂(τ, ξ)
∣∣ ∣∣ψ̂1(λ − τ, η − ξ)

∣∣ ∣∣ψ̂2(λ, η)
∣∣ dλdτ dη dξ

≤ c ‖φ‖
X

a,b0;1
s0

‖ψ1‖
X

0,b1;1
s1

‖ψ2‖
X

0,b2;1
s2

, (25)

which we now prove.
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By dyadic decomposition we bound the left side by a constant times∑
N,L

∫
θ12

∣∣∣P̂N0Q
s0
L0

φ(τ, ξ)

∣∣∣ ∣∣∣ ̂PN1Q
s1
L1

ψ1(λ − τ, η − ξ)

∣∣∣ ∣∣∣ ̂PN2Q
s2
L2

ψ2(λ, η)

∣∣∣ dλdτ dη dξ,

where the sum is over dyadic Nj, Lj ≥ 1, j = 0, 1, 2. The integral vanishes unless the two largest N ’s are comparable, 
so we reduce to the cases (i) N0 � N1 ∼ N2, (ii) N1 � N0 ∼ N2 or (iii) N2 � N0 ∼ N1. By symmetry, it suffices to 
consider cases (i) and (ii).

To estimate the integral we will apply Cauchy–Schwarz with respect to (τ, ξ) followed by Lemma 9 with û1(τ −λ,

ξ − η) = |ψ̂1(λ − τ, η − ξ)| and û2(λ, η) = |ψ̂2(λ, η)|, cp. Remark 3. It should be kept in mind that due to the sign 
change in the argument of û1, the sign s1 is reversed when we apply Lemma 9.

By [22, Lemma 2.2],

θ12 ≤ c

(
Lmax

N12
min

)1/2

, (26)

so applying Cauchy–Schwarz and Lemma 9 we bound by a constant times

S =
∑
N,L

(
min

(
1,

Lmax

N12
min

))1/2
C(N,L)

Na
0 L

b0
0 L

b1
1 L

b2
2

αN0,L0βN1,L1γN2,L2 ,

where

αN0,L0 = Na
0 L

b0
0

∥∥∥PN0Q
s0
L0

φ

∥∥∥
L2(R1+2)

,

βN1,L1 = L
b1
1

∥∥∥PN1Q
s1
L1

ψ1

∥∥∥
L2(R1+2)

,

γN2,L2 = L
b2
2

∥∥∥PN2Q
s2
L2

ψ2

∥∥∥
L2(R1+2)

,

and C(N, L) is as in Lemma 9. It remains to prove that

S ≤ c
∑

L

⎛⎝∑
N0

α2
N0,L0

⎞⎠1/2 ⎛⎝∑
N1

β2
N1,L1

⎞⎠1/2 ⎛⎝∑
N2

γ 2
N2,L2

⎞⎠1/2

. (27)

5.1.1. Case (ii), N1 �N0 ∼ N2

Then C(N, L) ≤ cN
1/2
1 N

1/4
0 L

1/2
minL

1/4
med, hence we bound the corresponding part of the sum S by a constant times

∑
N,L

1N1�N0∼N2

(
Lmax

N1

)μ N
1/2
1 N

1/4
0 L

1/2
minL

1/4
med

Na
0 L

b0
0 L

b1
1 L

b2
2

αN0,L0βN1,L1γN2,L2

for any μ ∈ [0, 1/2]. Clearly

L
1/2
minL

1/4
medL

μ
max

L
b0
0 L

b1
1 L

b2
2

≤ 1 (28)

provided that

b0 + b1 + b2 ≥ 3

4
+ μ, (29)

b0, b1, b2 ≥ max

(
1

4
,μ

)
. (30)

Then we are left with
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∑
N,L

1N1�N0∼N2

N
1/2−μ

1

N
a−1/4
0

αN0,L0βN1,L1γN2,L2 .

Assuming

0 ≤ μ <
1

2
(31)

we sum N1 and bound by∑
L

(
sup
N1

βN1,L1

) ∑
N0,N2

1N0∼N2

N
1/2−μ
0

N
a−1/4
0

αN0,L0γN2,L2 ,

so if a + μ − 3/4 ≥ 0, we can sum N1 ∼ N2 by Cauchy–Schwarz to obtain the desired estimate (27). We therefore 
choose μ = 3/4 − a. Then the conditions (29), (30) and (31) correspond exactly to the assumptions of the lemma. 
This concludes the proof in case (ii).

5.1.2. Case (i), N0 � N1 ∼ N2

First, if Lmax = L1 or Lmax = L2, then Lemma 9 gives C(N, L) ≤ cN
3/4
0 L

1/2
minL

1/4
med, hence we bound the corre-

sponding part of S by a constant times∑
N,L

1N0�N1∼N2

(
Lmax

N1

)μ N
3/4
0 L

1/2
minL

1/4
med

Na
0 L

b0
0 L

b1
1 L

b2
2

αN0,L0βN1,L1γN2,L2 . (32)

Taking μ = 3/4 − a as above, we apply (28) and reduce to∑
N,L

1N0�N1∼N2

(
N0

N1

)3/4−a

αN0,L0βN1,L1γN2,L2,

so if a < 3/4, we can sum N0 and then sum N1 ∼ N2 by Cauchy–Schwarz to get (27). If a = 3/4, we use instead 
C(N, L) ≤ cN0L

1/2
min and take μ = 1/4, yielding

∑
N,L

1N0�N1∼N2

(
Lmax

N1

)1/4 N0L
1/2
min

N
3/4
0 L

b0
0 L

b1
1 L

b2
2

αN0,L0βN1,L1γN2,L2 . (33)

Now we use the fact that

L
1/2
minL

1/4
max

L
b0
0 L

b1
1 L

b2
2

≤ 1

if b0 + b1 + b2 ≥ 3/4 and b0, b1, b2 ≥ 1/4, which are consistent with the assumptions of the lemma when a = 3/4, so 
we reduce to∑

N,L

1N0�N1∼N2

(
N0

N1

)1/4

αN0,L0βN1,L1γN2,L2 ,

and again obtain the desired bound (27).
It remains to consider the subcase Lmax = L0 of case (i). The argument used for a = 3/4 above still applies 

and yields (33), so it remains to consider a < 3/4. If s1 �= s2, then by Lemma 9 (with signs −s1 and s2, so equal 
signs) we have the estimate C(N, L) ≤ cN

1/2
0 L

1/2
minL

1/2
med. Interpolating this with C(N, L) ≤ cN0L

1/2
min gives C(N, L) ≤

cN
3/4
0 L

1/2
minL

1/4
med and hence we get again (32).

This leaves us with s1 = s2 in case (i) with Lmax = L0. From (24) we have θ12 ≤ cN0/N1, since |ξ | � N0 �
|η| ∼ N1. Interpolating this with (26) gives

θ12 ≤ c

(
N0

)1−2μ (
Lmax

)μ
N1 N1
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for μ ∈ [0, 1/2]. Invoking Lemma 9 with C(N, L) ≤ cN
1/2
0 N

1/4
1 L

1/2
minL

1/4
med, we obtain the bound

∑
N,L

1N0�N1∼N2

N
3/2−2μ−a
0

N
3/4−μ
1

L
1/2
minL

1/4
medL

μ
max

L
b0
0 L

b1
1 L

b2
2

αN0,L0βN1,L1γN2,L2 .

Taking μ = 3/4 − a and applying (28) we reduce to∑
N,L

1N0�N1∼N2

(
N0

N1

)a

αN0,L0βN1,L1γN2,L2 ,

so we only need a > 0 to sum N0, and then we sum N1 ∼ N2 by Cauchy–Schwarz. This concludes the proof of case 
(i) and of Theorem 4.

6. Local existence

In this section we prove the following local existence result, which is an extended version of Theorem 2.

Theorem 5. There exist c, c0 > 0 such that for any σ0 ≥ 0 and any data (7), the Cauchy problem (4) has a unique 
local solution (ψ+, ψ−, φ+) ∈ C([−δ, δ]; X0), where

δ = c0

1 + a2
0 + b2

0

, a2
0 = ‖f+‖2

Gσ0,0 + ‖f−‖2
Gσ0,0 , b0 = ‖g+‖Gσ0,1/2 .

Moreover,∑
±

‖ψ±‖
X

σ0,0,1/2;1
± (δ)

≤ 2ca0 and ‖φ+‖
X

σ0,1/2,1/2;1
+ (δ)

≤ 2c(a0 + b0).

Proof. To simplify the notation we write σ = σ0. Define the Picard iterates (ψ(n)
+ , ψ(n)

− , φ(n)
+ )∞n=−1 by starting at zero 

at n = −1 and continuing by the scheme⎧⎪⎨⎪⎩
(−i∂t + |D|)ψ(n+1)

+ = 
+
(−Mβψ(n) + (Reφ

(n)
+ )βψ(n)

)
, ψ

(n+1)
+ (0, x) = f+(x),

(−i∂t − |D|)ψ(n+1)
− = 
−

(−Mβψ(n) + (Reφ
(n)
+ )βψ(n)

)
, ψ

(n+1)
− (0, x) = f−(x),

(−i∂t + 〈D〉)φ(n+1)
+ = 〈D〉−1〈βψ(n),ψ(n) 〉, φ

(n+1)
+ (0, x) = g+(x),

where ψ(n) := ψ
(n)
+ + ψ

(n)
− . Since 
2+ = 
+ and 
−
+ = 0, we have 
+ψ

(n)
+ = ψ

(n)
+ and 
−ψ

(n)
+ = 0. Thus, 


+ψ(n) = ψ
(n)
+ , and similarly 
−ψ(n) = ψ

(n)
− . Setting

An =
∑
±

∥∥ψ(n)
±

∥∥
X

σ,0,1/2;1
± (δ)

, �An =
∑
±

∥∥ψ(n+1)
± − ψ

(n)
±

∥∥
X

σ,0,1/2;1
± (δ)

,

Bn = ∥∥φ(n)
+

∥∥
X

σ,1/2,1/2;1
+ (δ)

, �Bn = ∥∥φ(n+1)
+ − φ

(n)
+

∥∥
X

σ,1/2,1/2;1
+ (δ)

,

we claim that

An+1 ≤ ca0 + cδ1/2An (M + Bn) , (34)

Bn+1 ≤ cb0 + cδ1/2A2
n, (35)

and

�An+1 ≤ cδ1/2�An (M + Bn) + cδ1/2An�Bn, (36)

�Bn+1 ≤ cδ1/2An�An. (37)

Then by induction one obtains An ≤ 2ca0 and Bn ≤ 2c(a0 + b0) for all n, and further �An+1 + �Bn+1 ≤
(1/2)(�An + �Bn), with δ as in the statement of the theorem, for a sufficiently small c0 > 0 depending on c and M . 
The sequence of iterates therefore converges and the conclusion of the theorem follows.



S. Selberg / Ann. I. H. Poincaré – AN 36 (2019) 1311–1330 1327
It remains to prove the claimed estimates. By Lemma 8,

An+1 ≤ ca0 +
∑
±

cδ1/2
∥∥
±

(
Mβψ(n)

)∥∥
X

σ,0,0;∞
± (δ)

+
∑
±

cδ1/2−b2
∥∥
±

(
Reφ

(n)
+ βψ(n)

)∥∥
X

σ,0,−b2;∞
± (δ)

.

Using Xσ,0,0;∞
± (δ) = X

σ,0,0;∞
∓ (δ), the identity (6) and Lemma 6, we bound the second term on the right by∑

±
cδ1/2

∥∥Mβψ
(n)
∓

∥∥
X

σ,0,0;∞
∓ (δ)

≤ cεδ
1−εMAn

for any ε > 0. The third term we bound by, applying Corollary 2 with a = 1/2,∑
s1,s2

cδ1/2−b2
∥∥
s2

(
Reφ

(n)
+ β
s1ψ

(n)
)∥∥

X
σ,0,−b2;∞
± (δ)

≤ cδ3/2−b0−b1−b2BnAn, (38)

which requires b0, b1, b2 ≥ 1/4 and b0 + b1 + b2 ≥ 1. We choose b0 = b1 = b2 = 1/3. Finally, the estimate (35)
similarly reduces to∥∥〈β
s1ψ

(n),
s2ψ
(n) 〉∥∥

X
σ,−1/2,−1/3;∞
+ (δ)

≤ cδ1/3A2
n,

which also follows from Corollary 2. Finally, the estimates (36) and (37) follow from the same considerations by 
linearity. �
7. Approximate conservation of charge

In this section we prove Theorem 3. We need the following key estimate.

Lemma 10. Assume that a, b0, b1, b2 satisfy the assumptions of Theorem 4. Then there exists a constant c > 0 such 
that for all signs s0, s1, s2 ∈ {+, −}, all σ ≥ 0 and all θ ∈ [0, 1] we have the estimate∣∣∣∣∫ 〈

eσ‖D‖(φβ
s1ψ1
)− φ

(
β
s1e

σ‖D‖ψ1
)
,
s2ψ2

〉
dt dx

∣∣∣∣
≤ cσ θ ‖φ‖

X
σ,a+θ,b0;1
s0

‖ψ1‖
X

σ,0,b1;1
s1

‖ψ2‖
X

0,0,b2;1
s2

.

Proof. By Plancherel’s theorem we bound the left side by∣∣∣∣∫ �(ξ,η)φ̂(τ, ξ)
〈
β
(s1(η − ξ)) ψ̂1(λ − τ, η − ξ),
(s2η) ψ̂2(λ, η)

〉
dλdτ dη dξ

∣∣∣∣
where

�(ξ,η) = eσ‖η‖ − eσ‖η−ξ‖ = eσ‖η−ξ‖ (eσ(‖η‖−‖η−ξ‖) − 1
)

.

As in the proof of Theorem 4 we then bound by

c

∫
|�(ξ,η)| θ12

∣∣φ̂(τ, ξ)
∣∣ ∣∣ψ̂1(λ − τ, η − ξ)

∣∣ ∣∣ψ̂2(λ, η)
∣∣ dλdτ dη dξ

Applying the inequality∣∣ex − 1
∣∣ ≤ |x|θ e|x| (x ∈R, θ ∈ [0,1]),

and the triangle inequality 
∣∣‖η‖ − ‖η − ξ‖∣∣ ≤ ‖ξ‖, we finally bound by

cσ θ

∫
θ12〈ξ〉θ eσ‖ξ‖ ∣∣φ̂(τ, ξ)

∣∣ eσ‖η−ξ‖ ∣∣ψ̂1(λ − τ, η − ξ)
∣∣ ∣∣ψ̂2(λ, η)

∣∣ dλdτ dη dξ

and the desired estimate then follows from (25). �
We now have all the tools needed to prove the approximate conservation law.
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7.1. Proof of Theorem 3

By Theorem 5 (applied with σ0 replaced by σ ∈ [0, σ0]) there exist constants c, c0 > 0 such that for all σ ∈ [0, σ0]
we have the bounds

‖ψ+‖
X

σ,0,1/2;1
+ (δ(σ ))

+ ‖ψ−‖
X

σ,0,1/2;1
− (δ(σ ))

≤ cMσ (0)1/2, (39)

‖φ+‖
X

σ,1/2,1/2;1
+ (δ(σ ))

≤ c
(
Mσ (0)1/2 +Nσ (0)

)
, (40)

where

δ(σ ) = c0

1 +Mσ (0) +Nσ (0)2 . (41)

But clearly, δ(σ ) ≥ δ := δ(σ0) for σ ∈ [0, σ0], so we may replace δ(σ ) by δ in (39) and (40).

7.1.1. Proof of (9)
Set �± = eσ‖D‖ψ± and � = �+ + �−. Then (4) gives

(−i∂t + |D|)�+ = 
+
(−Mβ� + (Reφ+)β�

)+ 
+F,

(−i∂t − |D|)�− = 
−
(−Mβ� + (Reφ+)β�

)+ 
−F,

where

F = eσ‖D‖((Reφ+)βψ
)− (Reφ+)β�.

Now we calculate
d

dt
Mσ (t) = d

dt

∫ (〈�+(t, x),�+(t, x) 〉 + 〈�−(t, x),�−(t, x) 〉)dx

= 2 Im
∫ (〈 i∂t�+,�+ 〉 + 〈 i∂t�−,�− 〉)dx

= 2 Im
∫ (〈 (i∂t − |D|)�+,�+ 〉 + 〈 (i∂t + |D|)�−,�− 〉)dx

+ 2 Im
∫ (〈 |D|�+,�+ 〉 + 〈−|D|�−,�− 〉)dx

= 2 Im
∫ (

(M − Reφ+)〈β�,� 〉 − 〈F,� 〉)dx

= −2 Im
∫

〈F,� 〉dx,

where we used Plancherel to see that 
∫ 〈 |D|�±, �± 〉 dx = 0 and the self-adjointness of β to see that 〈 β�, � 〉 is real 

valued. Integrating over the time interval [0, T ] for any T ∈ [0, δ] we then get

Mσ (T ) ≤ Mσ (0) + 2

∣∣∣∣∫ χ[0,T ](t)〈F,� 〉(t, x) dx dt

∣∣∣∣
and applying Lemma 10 with

b0 = b1 = b2 =
{

1/2 − a/3 if a ∈ [3/8,1/2]
3/4 − a if a ∈ (1/4,3/8),

(42)

we bound the integral term by

c
∑

s0,s1,s2∈{+,−}
σ θ

∥∥χ[0,T ]φs0

∥∥
X

σ,a+θ,b0;1
s0

∥∥χ[0,T ]ψs1

∥∥
X

σ,0,b1;1
s1

∥∥χ[0,T ]ψs2

∥∥
X

σ,0,b2;1
s2

,

where we wrote 2 Reφ+ = φ+ + φ+ and used φ− = φ+. Taking θ = 1/2 − a and invoking Lemma 7 followed by 
Lemma 6, we bound the summands by
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cσ 1/2−a
∥∥φs0

∥∥
X

σ,1/2,b0;1
s0 (T )

∥∥ψs1

∥∥
X

σ,0,b1;1
s1 (T )

∥∥ψs2

∥∥
X

σ,0,b2;1
s2 (T )

≤ cT 3/2−b0−b1−b2σ 1/2−a
∥∥φs0

∥∥
X

σ,1/2,1/2;1
s0 (T )

∥∥ψs1

∥∥
X

σ,0,1/2;1
s1 (T )

∥∥ψs2

∥∥
X

σ,0,1/2;1
s2 (T )

≤ cT pσ 1/2−aMσ (0)
(
Mσ (0)1/2 +Nσ (0)

)
,

where we applied the bounds (39) and (40) and used the fact that ‖φ−‖
X

σ,1/2,1/2;1
− (T )

= ‖φ+‖
X

σ,1/2,1/2;1
+ (T )

, on account 

of φ− = φ+. This concludes the proof of (9).

7.1.2. Proof of (10)
Applying Corollary 1 to the last equation in (4) gives

sup
t∈[0,δ]

Nσ (t) ≤ Nσ (0) + cδ1/2−b0

∥∥∥〈D〉−1〈βψ,ψ 〉
∥∥∥

X
σ,1/2,−b0;∞
+ (δ)

,

where b0 ∈ [0, 1/2] remains to be chosen. Separating low frequencies, ‖ξ‖ ≤ σ−1, and high frequencies, ‖ξ‖ > σ−1, 
we estimate the last term by

cδ1/2−b0

(∥∥∥〈D〉−1〈βψ,ψ 〉
∥∥∥

X
0,1/2,−b0;∞
+ (δ)

+ σ θ
∥∥∥〈D〉θ−1〈βψ,ψ 〉

∥∥∥
X

σ,1/2,−b0;∞
+ (δ)

)
,

where θ ∈ [0, 1] remains to be chosen. We are going to estimate both terms using Corollary 2 and the bound (39). 
First, taking a = 1/2 and b1 = b2 = (1 − b0)/2 for any b0 ∈ [0, 1/2], and setting σ = 0, we get

δ1/2−b0

∥∥∥〈D〉−1〈βψ,ψ 〉
∥∥∥

X
0,1/2,−b0;∞
+ (δ)

≤ cδ3/2−b0−b1−b2M0(0) = cδ1/2 ‖ψ(0, ·)‖2
L2 .

Taking a = 1/2 − θ and choosing the b’s as in (42), we similarly bound

δ1/2−b0σ θ
∥∥∥〈D〉θ−1〈βψ,ψ 〉

∥∥∥
X

σ,1/2,−b0;∞
+ (δ)

≤ cδpσ 1/2−aMσ (0),

concluding the proof of (10) and of Theorem 3.
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