On the global Cauchy problem for the Hartree equation with rapidly decaying initial data
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 1081-1104.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

This paper is concerned with the Cauchy problem for the Hartree equation on Rn,nN with the nonlinearity of type (||γ|u|2)u,0<γ<n. It is shown that a global solution with some twisted persistence property exists for data in the space LpL2,1p2 under some suitable conditions on γ and spatial dimension nN. It is also shown that the global solution u has a smoothing effect in terms of spatial integrability in the sense that the map tu(t) is well defined and continuous from R{0} to Lp, which is well known for the solution to the corresponding linear Schrödinger equation. Local and global well-posedness results for hat Lp-spaces are also presented. The local and global results are proved by combining arguments by Carles–Mouzaoui with a new functional framework introduced by Zhou. Furthermore, it is also shown that the global results can be improved via generalized dispersive estimates in the case of one space dimension.

DOI : 10.1016/j.anihpc.2018.11.004
Classification : 35Q55
Mots-clés : Nonlinear Schrödinger equations, Hartree equation, Cauchy problem, Global well-posedness, $ {L}^{p}$-Cauchy data, Rapidly decaying data
@article{AIHPC_2019__36_4_1081_0,
     author = {Hyakuna, Ryosuke},
     title = {On the global {Cauchy} problem for the {Hartree} equation with rapidly decaying initial data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1081--1104},
     publisher = {Elsevier},
     volume = {36},
     number = {4},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.11.004},
     zbl = {1421.35337},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.004/}
}
TY  - JOUR
AU  - Hyakuna, Ryosuke
TI  - On the global Cauchy problem for the Hartree equation with rapidly decaying initial data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1081
EP  - 1104
VL  - 36
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.004/
DO  - 10.1016/j.anihpc.2018.11.004
LA  - en
ID  - AIHPC_2019__36_4_1081_0
ER  - 
%0 Journal Article
%A Hyakuna, Ryosuke
%T On the global Cauchy problem for the Hartree equation with rapidly decaying initial data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1081-1104
%V 36
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.004/
%R 10.1016/j.anihpc.2018.11.004
%G en
%F AIHPC_2019__36_4_1081_0
Hyakuna, Ryosuke. On the global Cauchy problem for the Hartree equation with rapidly decaying initial data. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 1081-1104. doi : 10.1016/j.anihpc.2018.11.004. http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.004/

[1] Bergh, J.; Löfström, J. Interpolation Spaces, Springer, Berlin, Heidelberg, New York, 1976 | DOI | Zbl

[2] Carles, R.; Mouzaoui, L. On the Cauchy problem for the Hartree type equation in the Wiener algebra, Proc. Am. Math. Soc., Volume 142 (2014) no. 7, pp. 2469–2482 | DOI | Zbl

[3] Cazenave, T. Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, New York Univ., Courant Inst. Math. Sci., New York, 2003 | Zbl

[4] Cazenave, T.; Vega, L.; Vilela, M.C. A note on the nonlinear Schrödinger equation in weak Lp spaces, Commun. Contemp. Math., Volume 3 (2001) no. 1, pp. 153–162 | DOI | Zbl

[5] Correia, S. Local Cauchy problem for the nonlinear Schrödinger equation in spaces of infinite mass, Rev. Mat. Complut., Volume 31 (2018) no. 2, pp. 449–465 | DOI | Zbl

[6] Fefferman, C. Inequalities for strongly singular convolution operators, Acta Math., Volume 124 (1970), pp. 9–36 | DOI | Zbl

[7] Ginibre, J.; Velo, G. On a class of Nonlinear Schrödinger equations. I. The Cauchy Problem, General Case, J. Funct. Anal., Volume 32 (1979), pp. 1–32 | Zbl

[8] Grünrock, A. An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., Volume 41 (2004), pp. 3287–3308 | Zbl

[9] Grünrock, A. Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not., Volume 41 (2005), pp. 2525–2558 | Zbl

[10] Hayashi, N.; Ozawa, T. Smoothing effect for some Schrödinger equations, J. Funct. Anal., Volume 85 (1989), pp. 307–348 | DOI | Zbl

[11] Hayashi, N.; Ozawa, T. Time decay for some Schrödinger equations, Math. Z., Volume 200 (1989), pp. 467–483 | DOI | Zbl

[12] Hayashi, N.; Saitoh, S. Analyticity and smoothing effect for the Schrödinger equation, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 52 (1990), pp. 163–173 | Numdam | MR | Zbl

[13] Hoshino, G.; Ozawa, T. Analytic smoothing effect for nonlinear Schrödinger equations with quintic nonlinearity, J. Math. Anal. Appl., Volume 419 (2014), pp. 285–297 | DOI | Zbl

[14] G. Hoshino, R. Hyakuna, Trilinear Lp estimates with applications to the Cauchy problem for the Hartree-type equation, preprint.

[15] Hyakuna, R. Global solutions to the Hartree equation for large Lp-initial data https://www.iumj.indiana.edu/IUMJ/Preprints/7740.pdf (to be published in Indiana Univ. Math. J. The preprint version is available at the journal website)

[16] Hyakuna, R. Multilinear estimates with applications to nonlinear Schrödinger and Hartree equations in Lpˆ spaces, J. Evol. Equ., Volume 18 (2018), pp. 1069–1084 | DOI | Zbl

[17] Kato, T. An Lq,r-theory for nonlinear Schrödinger equations, Spectral and Scattering Theory and Applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Tokyo, 1994, pp. 223–238 | Zbl

[18] Zhou, Y. Cauchy problem of nonlinear Schrödinger equation with initial data in Sobolev space Ws,p for p<2 , Trans. Am. Math. Soc., Volume 362 (2010), pp. 4683–4694 | DOI | Zbl

Cité par Sources :