Nous proposons une nouvelle discrétisation de la fonctionnelle de Mumford–Shah convergente au sens de la Γ-convergence. Les fonctionnelles discrètes agissent sur des fonctions définies sur des réseaux aléatoires stationnaires et dépendent de différences finies générales via un potentiel non-convexe. Dans ce cadre, la géométrie du réseau aléatoire influence grandement l'anisotropie de la fonctionnelle limite. Ainsi, en utilisant des réseaux aléatoires statistiquement isotropes, on démontre par des techniques d'homogénéisation le résultat d'approximation de la fonctionnelle vectorielle de Mumford–Shah en toutes dimensions.
We propose a new Γ-convergent discrete approximation of the Mumford–Shah functional. The discrete functionals act on functions defined on stationary stochastic lattices and take into account general finite differences through a non-convex potential. In this setting the geometry of the lattice strongly influences the anisotropy of the limit functional. Thus we can use statistically isotropic lattices and stochastic homogenization techniques to approximate the vectorial Mumford–Shah functional in any dimension.
Mots-clés : Mumford–Shah functional, Discrete approximation, Γ-convergence, Stochastic homogenization
@article{AIHPC_2019__36_4_887_0, author = {Ruf, Matthias}, title = {Discrete stochastic approximations of the {Mumford{\textendash}Shah} functional}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {887--937}, publisher = {Elsevier}, volume = {36}, number = {4}, year = {2019}, doi = {10.1016/j.anihpc.2018.10.004}, mrnumber = {3955107}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.004/} }
TY - JOUR AU - Ruf, Matthias TI - Discrete stochastic approximations of the Mumford–Shah functional JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 887 EP - 937 VL - 36 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.004/ DO - 10.1016/j.anihpc.2018.10.004 LA - en ID - AIHPC_2019__36_4_887_0 ER -
%0 Journal Article %A Ruf, Matthias %T Discrete stochastic approximations of the Mumford–Shah functional %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 887-937 %V 36 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.004/ %R 10.1016/j.anihpc.2018.10.004 %G en %F AIHPC_2019__36_4_887_0
Ruf, Matthias. Discrete stochastic approximations of the Mumford–Shah functional. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 887-937. doi : 10.1016/j.anihpc.2018.10.004. http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.004/
[1] Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal., Volume 86 (1984), pp. 125–145 | DOI | MR | Zbl
[2] Ergodic theorems for superadditive processes, J. Reine Angew. Math., Volume 323 (1981), pp. 53–67 | MR | Zbl
[3] Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint, Netw. Heterog. Media, Volume 1 (2006), pp. 85–107 | DOI | MR | Zbl
[4] A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., Volume 36 (2004), pp. 1–37 | DOI | MR | Zbl
[5] Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 200 (2011), pp. 881–943 | DOI | MR | Zbl
[6] Domain formation in magnetic polymer composites: an approach via stochastic homogenization, Arch. Ration. Mech. Anal., Volume 218 (2015), pp. 945–984 | DOI | MR
[7] Existence theory for a new class of variational problems, Arch. Ration. Mech. Anal., Volume 111 (1990), pp. 291–322 | DOI | MR | Zbl
[8] Functionals defined on partitions of sets of finite perimeter I: integral representation and -convergence, J. Math. Pures Appl., Volume 69 (1990), pp. 285–305 | MR | Zbl
[9] Functionals defined on partitions of sets of finite perimeter II: semicontinuity, relaxation and homogenization, J. Math. Pures Appl., Volume 69 (1990), pp. 307–333 | MR | Zbl
[10] New functionals in the calculus of variations (Italian), Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., Volume 82 (1988), pp. 199–210 | MR | Zbl
[11] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000 | DOI | MR | Zbl
[12] Approximation of functionals depending on jumps by elliptic functionals via -convergence, Commun. Pure Appl. Math., Volume 43 (1990), pp. 999–1036 | DOI | MR | Zbl
[13] On the approximation of free discontinuity problems, Boll. Unione Mat. Ital., Volume 6–B (1992), pp. 105–123 | MR | Zbl
[14] Anisotropic free-discontinuity functionals as the -limit of second order elliptic functionals, ESAIM Control Optim. Calc. Var. (2017) | DOI | Numdam | MR
[15] Quantitative analysis of finite-difference approximations of free-discontinuity problems, 2018 (Preprint) | arXiv | MR
[16] Discrete approximation of a free discontinuity problem, Numer. Funct. Anal. Optim., Volume 15 (1994), pp. 201–224 | DOI | MR | Zbl
[17] The energy of some microscopic stochastic lattices, Arch. Ration. Mech. Anal., Volume 184 (2007), pp. 303–339 | DOI | MR | Zbl
[18] A global method for relaxation in and in , Arch. Ration. Mech. Anal., Volume 165 (2002), pp. 187–242 | MR | Zbl
[19] Image segmentation with a finite element method, ESAIM: M2AN, Volume 33 (1999), pp. 229–244 | DOI | Numdam | MR | Zbl
[20] Implementation of an adaptive finite-element approximation of the Mumford–Shah functional, Numer. Math., Volume 85 (2000), pp. 609–646 | DOI | MR | Zbl
[21] -Convergence for Beginners, Oxford Lecture Series in Mathematics and Its Applications, vol. 22, Oxford University Press, Oxford, 2002 | DOI | MR | Zbl
[22] Continuum limit and stochastic homogenization of discrete ferromagnetic thin films, Anal. PDE, Volume 11 (2018), pp. 499–553 | DOI | MR
[23] Non-local approximation of the Mumford–Shah functional, Calc. Var. Partial Differ. Equ., Volume 5 (1997), pp. 293–322 | DOI | MR | Zbl
[24] Homogenization of free discontinuity problems, Arch. Ration. Mech. Anal., Volume 135 (1996), pp. 297–356 | DOI | MR | Zbl
[25] Overall properties of a discrete membrane with randomly distributed defects, Arch. Ration. Mech. Anal., Volume 189 (2008), pp. 301–323 | DOI | MR | Zbl
[26] A quantitative description of mesh dependence for the discretization of singularly perturbed nonconvex problems, SIAM J. Numer. Anal., Volume 50 (2012), pp. 1883–1898 | DOI | MR | Zbl
[27] Second-order edge-penalization in the Ambrosio–Tortorelli functional, Multiscale Model. Simul., Volume 13 (2015), pp. 1354–1389 | DOI | MR
[28] Γ-convergence of free discontinuity problems, 2017 (Preprint) | arXiv | MR
[29] Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations, SIAM J. Appl. Math., Volume 55 (1995), pp. 827–863 | DOI | MR | Zbl
[30] Finite-differences discretizations of the Mumford–Shah functional, ESAIM: M2A, Volume 33 (1999), pp. 261–288 | DOI | Numdam | MR | Zbl
[31] Discrete approximation of the Mumford–Shah functional in dimension two, ESAIM: M2A, Volume 33 (1999), pp. 651–672 | Numdam | MR | Zbl
[32] Discrete spin systems on random lattices at the bulk scaling, Discrete Contin. Dyn. Syst., Ser. S, Volume 10 (2017), pp. 101–117 | MR
[33] A density result in with respect to non-isotropic energies, Nonlinear Anal., Volume 38 (1999), pp. 585–604 | DOI | MR | Zbl
[34] Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, vol. 78, Springer, New York, 2008 | MR | Zbl
[35] An Introduction to -Convergence, Progress in Nonlinear Differential Equations and Their Applications, vol. 8, Birkhäuser Boston Inc., Boston, MA, 1993 | DOI | MR | Zbl
[36] Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 176 (2005), pp. 165–225 | MR | Zbl
[37] Nonlinear stochastic homogenization, Ann. Mat. Pura Appl., Volume 144 (1986), pp. 347–389 | DOI | MR | Zbl
[38] Existence theorem for a minimum problem with free discontinuity set, Arch. Ration. Mech. Anal., Volume 108 (1989), pp. 195–218 | DOI | MR | Zbl
[39] Fine regularity results for Mumford–Shah minimizers: porosity, higher integrability and the Mumford–Shah conjecture, Free Discontinuity Problems, PSNS, vol. 19, 2016 (Pisa) | MR
[40] Modern Methods in the Calculus of Variations: Spaces, Springer, New York, 2010 | MR | Zbl
[41] Analysis of concentration and oscillation effects generated by gradients, SIAM J. Math. Anal., Volume 29 (1998), pp. 736–756 | DOI | MR | Zbl
[42] Continuum limit of total variation on point clouds, Arch. Ration. Mech. Anal., Volume 220 (2016), pp. 193–241 | MR
[43] A -convergence approach to stability of unilateral minimality properties in fracture mechanics and applications, Arch. Ration. Mech. Anal., Volume 180 (2006), pp. 399–447 | DOI | MR | Zbl
[44] Random parking, Euclidean functionals, and rubber elasticity, Commun. Math. Phys., Volume 321 (2013), pp. 1–31 | DOI | MR | Zbl
[45] Finite difference approximation of the Mumford–Shah functional, Commun. Pure Appl. Math., Volume 51 (1998), pp. 197–228 | DOI | MR | Zbl
[46] Quasiconformal maps in metric spaces with controlled geometry, Acta Math., Volume 181 (1998), pp. 1–61 | DOI | MR | Zbl
[47] Ergodic Theorems, De Gruyter Studies in Mathematics, vol. 6, De Gruyter, Berlin, 1985 | DOI | MR | Zbl
[48] On the representation of effective energy densities, ESAIM Control Optim. Calc. Var., Volume 5 (2000), pp. 529–538 | DOI | Numdam | MR | Zbl
[49] A selective review on Mumford–Shah minimizers, Boll. Unione Mat. Ital., Volume 9 (2016), pp. 69–113 | DOI | MR
[50] Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., Volume 42 (1989), pp. 577–685 | DOI | MR | Zbl
[51] Random parking, sequential adsorption, and the jamming limit, Commun. Math. Phys., Volume 218 (2001), pp. 153–176 | DOI | MR | Zbl
[52] An algorithm for minimizing the Mumford–Shah functional, IEEE 12th International Conference on Computer Vision, 2000, pp. 1133–1140
[53] Real-time minimization of the piecewise smooth Mumford–Shah functional, Comput. Vis. ECCV, Volume 2014 (2014), pp. 127–141
Cité par Sources :