This work is devoted to the analysis of the quantum drift-diffusion model derived by Degond et al. in [7]. The model is obtained as the diffusive limit of the quantum Liouville–BGK equation, where the collision term is defined after a local quantum statistical equilibrium. The corner stone of the model is the closure relation between the density and the current, which is nonlinear and nonlocal, and is the main source of the mathematical difficulties. The question of the existence of solutions has been open since the derivation of the model, and we provide here a first result in a one-dimensional periodic setting. The proof is based on an approximation argument, and exploits some properties of the minimizers of an appropriate quantum free energy. We investigate as well the long time behavior, and show that the solutions converge exponentially fast to the equilibrium. This is done by deriving a non-commutative logarithmic Sobolev inequality for the local quantum statistical equilibrium.
@article{AIHPC_2019__36_3_811_0, author = {Pinaud, Olivier}, title = {The quantum drift-diffusion model: {Existence} and exponential convergence to the equilibrium}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {811--836}, publisher = {Elsevier}, volume = {36}, number = {3}, year = {2019}, doi = {10.1016/j.anihpc.2018.10.002}, zbl = {1412.82022}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.002/} }
TY - JOUR AU - Pinaud, Olivier TI - The quantum drift-diffusion model: Existence and exponential convergence to the equilibrium JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 811 EP - 836 VL - 36 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.002/ DO - 10.1016/j.anihpc.2018.10.002 LA - en ID - AIHPC_2019__36_3_811_0 ER -
%0 Journal Article %A Pinaud, Olivier %T The quantum drift-diffusion model: Existence and exponential convergence to the equilibrium %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 811-836 %V 36 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.002/ %R 10.1016/j.anihpc.2018.10.002 %G en %F AIHPC_2019__36_3_811_0
Pinaud, Olivier. The quantum drift-diffusion model: Existence and exponential convergence to the equilibrium. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 811-836. doi : 10.1016/j.anihpc.2018.10.002. http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.002/
[1] Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005 | Zbl
[2] A model for collision processes in gases 1. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., Volume 94 (1954), pp. 511–525 | DOI | Zbl
[3] Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations, Commun. Pure Appl. Math., Volume 47 (1994), pp. 923–942 | DOI | Zbl
[4] Logarithmic Sobolev inequalities in non-commutative algebras, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 18 (2015) (pp. 1550011, 30) | DOI | Zbl
[5] Remainder terms for some quantum entropy inequalities, J. Math. Phys., Volume 55 (2014) (pp. 042201, 5) | DOI | Zbl
[6] An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes, J. Comput. Phys., Volume 221 (2007), pp. 226–249 | DOI | Zbl
[7] Quantum energy-transport and drift-diffusion models, J. Stat. Phys., Volume 118 (2005), pp. 625–667 | DOI | Zbl
[8] Quantum moment hydrodynamics and the entropy principle, J. Stat. Phys., Volume 112 (2003), pp. 587–628 | DOI | Zbl
[9] Dynamics of an anchored Toom interface, J. Phys. A, Volume 24 (1991), pp. 4805–4834 | DOI | Zbl
[10] Fluctuations of a stationary nonequilibrium interface, Phys. Rev. Lett., Volume 67 (1991), pp. 165–168 | DOI | Zbl
[11] R. Duboscq, O. Pinaud, On the minimization of quantum entropies under local constraints, submitted for publication.
[12] Entropic discretization of a quantum drift-diffusion model, SIAM J. Numer. Anal., Volume 43 (2005), pp. 1828–1849 | DOI | Zbl
[13] The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Ration. Mech. Anal., Volume 194 (2009), pp. 133–220 | DOI | Zbl
[14] A nonlinear fourth-order parabolic equation with nonhomogeneous boundary conditions, SIAM J. Math. Anal., Volume 37 (2006), pp. 1761–1779 | Zbl
[15] The Derrida–Lebowitz–Speer–Spohn equation: existence, nonuniqueness, and decay rates of the solutions, SIAM J. Math. Anal., Volume 39 (2008), pp. 1996–2015 | DOI | Zbl
[16] Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems, SIAM J. Math. Anal., Volume 32 (2000), pp. 760–777 | DOI | Zbl
[17] Moment closure hierarchies for kinetic theories, J. Stat. Phys., Volume 83 (1996), pp. 1021–1065 | DOI | Zbl
[18] A family of monotone quantum relative entropies, Lett. Math. Phys., Volume 104 (2014), pp. 691–705 | DOI | Zbl
[19] Semiconductor Equations, Springer-Verlag, Vienna, 1990 | DOI | Zbl
[20] An inverse problem in quantum statistical physics, J. Stat. Phys., Volume 140 (2010), pp. 565–602 | DOI | Zbl
[21] A problem of moment realizability in quantum statistical physics, Kinet. Relat. Models, Volume 4 (2011), pp. 1143–1158 | DOI | Zbl
[22] The quantum Liouville–BGK equation and the moment problem, J. Differ. Equ., Volume 263 (2017), pp. 3737–3787 | DOI | Zbl
[23] A variational formulation of Schrödinger–Poisson systems in dimension , Commun. Partial Differ. Equ., Volume 18 (1993), pp. 1125–1147 | DOI | Zbl
[24] General properties of entropy, Rev. Mod. Phys., Volume 50 (1978), pp. 220–260 | DOI
Cité par Sources :