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Abstract

This work is devoted to the analysis of the quantum drift-diffusion model derived by Degond et al. in [7]. The model is obtained 
as the diffusive limit of the quantum Liouville–BGK equation, where the collision term is defined after a local quantum statistical 
equilibrium. The corner stone of the model is the closure relation between the density and the current, which is nonlinear and 
nonlocal, and is the main source of the mathematical difficulties. The question of the existence of solutions has been open since 
the derivation of the model, and we provide here a first result in a one-dimensional periodic setting. The proof is based on an 
approximation argument, and exploits some properties of the minimizers of an appropriate quantum free energy. We investigate as 
well the long time behavior, and show that the solutions converge exponentially fast to the equilibrium. This is done by deriving a 
non-commutative logarithmic Sobolev inequality for the local quantum statistical equilibrium.
© 2018 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The quantum drift-diffusion model was derived in [7] by Degond et al., with the goal of describing the diffusive 
behavior of quantum particles. The widely used classical drift-diffusion model [19] is indeed not accurate as the size 
of electronic devices decreases, and models accounting for quantum effects are necessary. The quantum drift-diffusion 
model is obtained as the (informal) diffusive limit of the quantum Liouville–BGK equation

ih̄∂t� = [H,�] + ih̄Q(�), (1)

where � is the density operator, i.e. a self-adjoint nonnegative trace class operator that models a statistical ensemble 
of particles (here electrons), H is a given Hamiltonian, [·, ·] denotes the commutator between two operators, and Q
is a collision operator. The original feature of (1) lies in the definition of Q, which is of BGK type [2], and takes the 
form, in its simplest version,
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Q(�) = 1

τ
(�e(�) − �) , (2)

where τ is a relaxation time and �e(�) is a so-called quantum statistical equilibrium. The main motivation behind 
equations (1)–(2) is to describe the collective dynamics of many-particles quantum systems, and in particular to de-
rive reduced quantum fluid models. To this end, Degond and Ringhofer translates in [8] Levermore’s entropy closure 
strategy [17] to the quantum case. As in the kinetic situation, this requires the introduction of some statistical equilib-
ria, which, in the quantum case, are minimizers of the free energy

F(�) = T Tr(β(�)) + Tr(H�),

where T is the temperature (we will set h̄ = T = 1 for simplicity, as well as all physical constants), β is an entropy 
function, and Tr denotes operator trace. The free energy F is minimized under a given set of constraints on the 
moments of �, which include for instance the density, the momentum, and the energy, and these constraints present 
the particularity of being local. In other terms, when prescribing the first moment only for simplicity of the exposition, 
F is minimized under the constraint that the local density n[�](x) of � is equal to a given function n(x). If � is 
associated to an integral kernel ρ(x, y), then n[�](x) is simply formally ρ(x, x). The analysis of the minimization 
problem alone is not trivial, mostly because of the local character of the constraints, and was addressed in [20,21]
in the cases where the first two moments of � are prescribed. A case including the energy moment was recently 
considered in [11].

In its simplest form, the collision operator Q is then defined after the equilibrium �e(�), where �e(�) is a minimizer 
of the free energy under the constraint n[�e](x) = n[�](x). When β is the Boltzmann entropy, then �e is referred to as 
the quantum Maxwellian. Note that a rigorous construction of the latter as a minimizer of the constrained free energy F
is not direct, see discussions of this fact in [22]. With the so-defined �e(�) at hand, one can then consider the evolution 
problem (1). The main difficulty in the analysis is the fact that the map � �→ �e(�) is nonlinear, and foremost that it 
is defined via an implicit intricate nonlocal relation (see further equation (3c)). The existence of solutions to (1) was 
proved in [22] in a one-dimensional setting, the uniqueness and higher dimensional settings remain open problems.

The Quantum Drift-Diffusion model (QDD in the sequel) is obtained as the diffusive limit of (1) when β is the 
Boltzmann entropy. For ε = τ/t , where t � τ is some characteristic time, it is shown formally in [7], that a solution 
�ε(t) to an appropriately rescaled version of (1) converges as ε → 0 to a quantum Maxwellian of the form exp(−(H +
A(t, x))) (defined in the functional calculus sense), where A(t, x) is the so-called quantum chemical potential and 
satisfies the system, that will be complemented with boundary conditions further,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂n

∂t
+ ∇ · (n∇(A − V )

) = 0, (a)

−�V = n, (b)

n = n[e−(H+A)] =
∑
p∈N

e−λp |φp|2. (c)

(3)

Above, V is the Poisson potential that accounts for the electrostatic interaction between the electrons. The corner stone 
of the above system is the nonlinear nonlocal closure relation (3c), that expresses the relationship between the density 
n and the potential A: n is the local density of the operator exp(−(H + A)). Assuming the Hamiltonian H + A has a 
compact resolvant, the second equality in (3c) holds for (λp, φp)p∈N the spectral decomposition of H +A. Since A is 
the main quantity here, the system (3a)–(3c) is probably best seen as an evolutionary problem on A rather than on n.

One of our objectives in this work is to construct solutions to (3a)–(3c). The question has been open since the 
derivation of the model in [7]. Some progress was made in [12], where solutions to a semi-discretized (w.r.t. the time 
variable) system were constructed as minimizers of an appropriate functional. The continuum limit was not performed 
in [12], mostly for two reasons: (i) uniform estimates in the discretization parameter were missing; they require some 
lower bounds on the density n that were not available at the time, and (ii) the closure relation (3c) was not yet well 
understood mathematically. We provide here the missing ingredients needed to pass to the limit, and therefore obtain 
the first result of existence of solutions for (3a)–(3c): we derive a lower bound on the density assuming the initial 
state is sufficiently close to the equilibrium, and, based on our previous analyzes of the minimization problem in 
[20–22], we have now the technical tools to obtain (3c) as the limit of the discretized version. We will work in a 
one-dimensional setting with periodic boundary conditions. The latter can directly be replaced by Neumann boundary 
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conditions, while Dirichlet boundary conditions would create additional technical difficulties since the density would 
vanish at the boundary.

The key ingredient in the proof of existence is the lower bound for n as many other important uniform estimates 
depend upon it. Assuming the initial condition is sufficiently close to the equilibrium, our derivation of the bound 
does not exploit any other properties of (3a)–(3c) than just the dissipation of the free energy. We believe it would be 
possible to remove the assumption on the initial condition by replacing the strict positivity of n by some integrability 
of n−1. The latter remains to be established, and would require a nontrivial analysis of the system (3a)–(3c) beyond 
the sole decrease of the free energy.

Our other objective is to investigate the long time limit of (3a)–(3c), and in particular to obtain an exponential con-
vergence to the equilibrium. This will be achieved by deriving some non-commutative logarithmic Sobolev inequality 
satisfied by the operator exp(−(H + A(t, x))), in the spirit of those of [4].

As a conclusion of this introduction, we would like to point out that a different model is also referred to as the 
quantum drift-diffusion model in the literature. This model, sometimes also called the “density gradient model”, is 
a classical drift-diffusion model corrected by a quantum term. As was shown in [7], it is actually obtained in the 
semi-classical limit of the quantum drift-diffusion model considered here, by accounting for the first-order correction. 
In the density-gradient model, the closure relation is local and much simpler than (3c), and A is related to the so-called 
Bohm potential �

√
n/

√
n, leading to a fourth-order parabolic equation of the form

∂n

∂t
+ ∇ ·

(
n∇

(
�

√
n√

n
− log(n)

))
= 0. (4)

One disadvantage of this model is the introduction of high order derivatives, that do not appear in (3a)–(3c). A closely 
related model, obtained in the zero temperature limit (the term log(n) then vanishes in (4)), is the Derrida–Lebowitz–
Speer–Spohn equation [9,10], that was extensively studied mathematically in the recent years. The existence and 
uniqueness of solutions was first limited to one-dimensional domains for the same technical reason as here, see 
[3,14,16]. The existence of solutions was then extended to multi-dimensional domains in [13] using optimal transport 
techniques, and in [15] with more direct methods.

Note that the QDD system (3a)–(3c) inherits some of the technical difficulties of (4) (or vice-versa), in particular 
the strict positivity of the density, and presents new challenges as the closure relation is not local. In particular, the 
monotonicity property of the high-order non-linear term in (4) obtained in [16], which is the main ingredient for 
proving uniqueness, does not seem to generalize to our case and we are limited to an existence result.

The paper is structured as follows: in Section 2, we introduce some notation and important results about the min-
imization of the free energy F(�); our main theorem is stated in Section 3, and its proof is given in Section 4. 
A technical lemma is finally proved in the Appendix.

Acknowledgment. This work was supported by NSF CAREER grant DMS-1452349. The author would like to 
thank the anonymous referee for suggestions that helped improve the manuscript.

2. Preliminaries

We start by introducing some notation.

Notation. Our domain � is the 1-torus [0, 1]. We will denote by Lr(�), r ∈ [1, ∞], the usual Lebesgue spaces of 
complex-valued functions, and by Wk,r(�), the standard Sobolev spaces. We introduce as well Hk = Wk,2, and (·, ·)
for the Hermitian product on L2(�) with the convention (f, g) = ∫

�
f gdx. We will use the notations ∇ = d/dx and 

� = d2/dx2 for brevity. For a given external potential V0 ∈ L∞(�), we consider then the Hamiltonian

H = −� + V0 with domain D(H) = {
u ∈ H 2(�) : u(0) = u(1), ∇u(0) = ∇u(1)

}
. (5)

The free Hamiltonian −� is denoted by H0, and H 1
per is the space of H 1(�) functions u that satisfy u(0) = u(1). 

Its dual space is H−1
per . We shall denote by L(L2(�)) the space of bounded operators on L2(�), by J1 ≡ J1(L

2)

the space of trace class operators on L2(�), and more generally by Jr the Schatten space of order r with norm 
‖�‖Jr

= (Tr(|�|r ))1/r , where Tr(·) denotes operator trace and |�| = √
�∗�.
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A density operator is defined as a nonnegative trace class, self-adjoint operator on L2(�). We introduce the fol-
lowing space:

E =
{
� ∈ J1, such that

√
H0|�|√H0 ∈ J1

}
,

where 
√

H0|�|√H0 denotes the extension of the operator 
√

H0|�|√H0 to L2(�). We will drop the extension sign in 
the sequel to ease notation. The space E is a Banach space when endowed with the norm

‖�‖E = Tr
(|�|) + Tr

(√
H0|�|√H0

)
.

The energy space is the following closed convex subspace of E :

E+ = {� ∈ E : � ≥ 0} .

Note that operators in E+ are automatically self-adjoint since they are bounded and positive on the complex Hilbert 
space L2(�). For any � ∈ J1 with � = �∗, one can associate a real-valued local density n[�](x), formally defined 
by n[�](x) = ρ(x, x), where ρ is the integral kernel of �. The density n[�] can be in fact identified uniquely by the 
following weak formulation:

∀φ ∈ L∞(�), Tr
(
��

) =
∫
�

φ(x)n[�](x)dx,

where, in the left-hand side, � denotes the multiplication operator by φ and belongs to L(L2(�)). In the sequel, we 
will consistently identify a function and its associated multiplication operator. Throughout the paper, C will denote a 
generic constant that might differ from line to line.

The next step is to introduce the minimization problem that is at the core of the closure relation (3c).

The minimization problem. We will work with the Boltzmann entropy β(x) = x logx − x. For � ∈ E+ and 
V [n[�]] ≡ V the Poisson potential satisfying (3b) with boundary conditions V (0) = V (1) = 0 and density n[�] on 
the right-hand side, we introduce the free energy F defined by

F(�) = Tr
(
β(�)

) + Tr
(√

H0�
√

H0
) + Tr

(
V0�

) + 1

2
‖∇V ‖2

L2 . (6)

Note that all terms above are well defined when � ∈ E+: on the one hand, it is direct to see that n[�] ∈ W 1,1(�), 
and therefore elliptic regularity shows that the last term above is finite; on the other hand, the entropy term is finite 
according to (24) in Lemma 4.2 further. It is moreover a classical fact that the mapping � �→ Tr(β(�)) is strictly 
convex (see e.g. [20], Lemma 3.3, for a proof), and therefore F is strictly convex as well.

The theorem below characterizes the minimizers of F under a global density constraint. They will be shown to be 
the equilibrium solutions to (3a)–(3c). The proof can be found in [23], up to minor modifications.

Theorem 2.1 (The global minimization problem). Let N ∈R
∗+. The problem

min F(�), for � ∈ E+ with Tr
(
�
) = N,

admits a unique solution that reads

�∞ = exp
( − (H + A∞)

)
,

where A∞ = V∞ − εF ∈ H 1
per , for εF a constant and

−�V∞ = n[�∞], V∞(0) = V∞(1) = 0.

Moreover, there exists a constant n∞ > 0 such that n[�∞](x) ≥ n∞, ∀x ∈ �.

The minimization problem of the last theorem can be recast into a Schrödinger–Poisson system as in [23]: since 
V0 + A∞ ∈ L∞(�), the operator H + A∞ with domain D(H) given in (5) is bounded below and has a compact 
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resolvant; denoting by (λp, ψp)p∈N the spectral decomposition of H + A∞ (counting multiplicity and (λp)p∈N non-
decreasing), we have, a.e. in �,

(H + V∞ − εF )ψp = λpψp, and n[�∞] =
∑
p∈N

e−λp |ψp|2.

Note that n[�∞] is in L1(�) since �∞ is trace class. The strict positivity of the density is not addressed in [23]: it fol-
lows from the fact that the ground state ψ0 ∈ D(H) ⊂ C0(�) verifies ψ0(x) > 0 on � according to the Krein–Rutman 
theorem.

The next theorem addresses the minimizers of F under local constraints, which is a much more difficult problem. 
Its proof can be found in [20], while the representation formula (7) is in [22] (with a slight adaptation to non-zero 
external potentials). Note that since the density n is given, the Poisson potential is known.

Theorem 2.2 (The local minimization problem). Let n ∈ H 1
per , nonnegative. Then, the problem

min F(�), for � ∈ E+ with n[�] = n,

admits a unique solution. If moreover n > 0 on �, the minimizer �[n] is characterized by

�[n] = exp
( − (H + A[n])),

where A[n] belongs to H−1
per and is given by the implicit relation, for � ≡ �[n],

A[n] = −V0 + 1

n

(
1

2
�n + n[∇�∇] − n[� log�]

)
. (7)

The definition of �[n] above shows that the closure relation (3c) is equivalent to define A as (unique) the chemical 
potential arising from the minimization of the free energy F(�) under the local minimization constraint n[�] = n. Note 
moreover that we have the relations, for (ρp, φp)p∈N the spectral decomposition of � ≡ �[n] (counting multiplicity, 
with (λp)p∈N nonincreasing and converging to zero),

n[∇�∇] = −
∑
p∈N

ρp|∇φp|2, n[� log�] =
∑
p∈N

(
ρp logρp

) |φp|2,

which are both defined in L1(�) since �[n] ∈ E+. This is clear for the first term, for the second one it is a consequence 
of Lemma 4.2 further that shows that � log� is trace class.

For completeness, we give below a formal derivation of the representation formulas for �[n] and A[n] of Theo-
rem 2.2. Since the Poisson potential V is fixed in the context of Theorem 2.2, it does not change the minimum of 
F and we may set as well V = 0 in (6). The most direct way to proceed is then probably to consider the penalized 
unconstrained problem consisting in minimizing

F(�) + 1

2ε
‖n[�] − n‖2

L2

among density operators in E+. Its unique solution �ε is shown in [20] to converge to the solution �[n] of the con-
strained problem. The Euler–Lagrange equation for the penalized problem is then

log�ε + H + Aε = 0, with Aε = (n[�ε] − n)/ε, (8)

leading to �ε = exp(−(H + Aε)) and to the expression of �[n] after taking the limit. Note that the chemical potential 
A[n] ∈ H−1

per is uniquely defined, for otherwise two different Hamiltonians H + Ai (defined in the sense of quadratic 
forms in H 1

per ), i = {1, 2}, would share the same set of eigenvalues and eigenfunctions given by (− logρp, φp)p∈N. 
Regarding the expression of A[n] stated in (7), the Euler–Lagrange equation (8) holds with �ε ≡ �[n] ≡ � and 
Aε ≡ A[n], and leads to

n[� log�] + A[n]n + n[�H + H�]/2 = 0

after multiplying by � on the left and the right and by taking the local trace. Since some algebra gives n[�H +H�]/2 =
V0n − �n/2 − n[∇�∇], we recover (7).
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With Theorem 2.2 at hand, it is possible to recast QDD as a gradient flow, at least formally. For n given as in the 
theorem, and for λ ≡ λ(x), define indeed the Lagrangian Ln(�, λ) by

Ln(�,λ) = F(�) + (n[�] − n,λ).

In the free energy F , we now account for the Poisson potential V . The minimizer �[n] is then such that

F(�[n]) = min
�

max
λ

Ln(�,λ) = max
λ

min
�

Ln(�,λ) = max
λ

Ln(�λ,λ),

where �λ verifies DF(�λ)(δ�) + (n[δ�], λ) = 0 (with DF(�λ)(δ�) the Gâteaux derivative of F at �λ in the direc-
tion δ�), leading to the expression �λ = exp(−(H + V [n[�λ]] + λ)). For λ[n] the solution Lagrange parameter, a 
standard calculus of variations argument shows that

∀δn,
d

dt
F (�[n + tδn])

∣∣∣∣
t=0

= −(δn,λ[n]).

This shows, defining A[n] := V [n] + λ[n], with V [n] = V [n[�λ[n]]], that the L2 Gâteaux derivative of F(�[n]) with 
respect to n, denoted δF (�[n])/δn, verifies

δF (�[n])
δn

= −(A[n] − V [n]).
The quantum drift-diffusion equation then becomes

∂n

∂t
− ∇ ·

(
n∇ δF (�[n])

δn

)
= 0, (9)

which is the classical form of a gradient flow in the Wasserstein space. The standard theory, see e.g. [1], covers cases 
where F is a nonlinear, local, functional of n, or non-local functionals of convolution type. Here, our functional 
n �→ F(�[n]) is non-local and not of convolution type, and is much harder to analyze. We were in particular not able 
to prove the so-called geodesic λ-convexity, which leads to the existence and uniqueness of solutions for equations of 
the form (9) under appropriate hypotheses. We then decided to follow a different route than that of gradient flows.

We turn now to the semi-discretized version of (3a) introduced in [12], which is the starting point of our analysis.

The semi-discretized equation. For n0 given, the system reads⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nk+1 − nk

�t
+ ∇(

nk∇(Ak+1 − Vk+1)
) = 0 (a)

−�Vk+1 = nk+1 (b)

nk+1 = ∑
p∈N e−λp[Ak+1]|φp[Ak+1]|2 (c)

(10)

where (λp[A], φp[A])p∈N are the spectral elements of the Hamiltonian H [A] with the same domain as in (5). Solu-
tions Ak to (10a) are sought in H 1

per , and those of (10b) in H 1
0 (�). Before stating an existence theorem for (10a)–(10c), 

we introduce the following functionals:

F[n] = −
∫
�

n(A[n] + 1)dx + 1

2

∫
�

|∇V [n]|2 dx, (11)

which is formally equivalent to the free energy F(�[n]) (a proof is given in Lemma 4.7 further), and

�[n] = −
∫
�

(
n(A[n] − A[n∞]) + n − n∞

)
dx + 1

2

∫
�

|∇(V [n] − V [n∞])|2 dx, (12)

which is essentially the relative entropy between �[n] and �∞ (above n∞ = n[�∞]). Above, the equilibrium �∞ is 
the solution to the minimization problem of Theorem 2.1 with global constraint Tr(�∞) = ‖n0‖L1 .

According to [12], Theorem 3.1, the following result holds.
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Theorem 2.3. Let n0 ∈ C0(�) such that n0 > 0 and V0 ∈ L∞(�). Then, the system (10a)–(10c) admits a unique 
solution such that, for all k ∈ N, Ak ∈ H 1

per , Vk ∈ H 1
0 (�), and nk ∈ C0(�) with nk > 0. We have moreover the 

following relations, for all k ∈N:∫
�

nkdx =
∫
�

n0dx (13)

F[nk] + �t

k−1∑
j=0

∫
�

nj |∇(Aj+1 − Vj+1)|2dx ≤ F[n0] (14)

�[nk] ≤ �[n0]. (15)

Relation (14) is the discrete counterpart of the free energy dissipation (19) stated further. Besides, since �[n(t)]
can be written as �[n(t)] =F[n(t)] + C for some constant C, then �[n(t)] decreases as well and (15) is the discrete 
version of this.

We present in the next section our main result, obtained in part by passing to the limit in (10a)–(10c).

3. Main result

We define first the weak solutions to (3a) for an initial condition n0 ∈ L2(�): for T > 0 arbitrary, we say that 
(n, A, V ) is a weak solution if n ∈ L2(0, T , L2(�)), A ∈ L2(0, T , H 1

per ), V ∈ L2(0, T , H 1
0 (�)), and if for any ϕ ∈

C1([0, T ], H 1
per ) with ϕ = 0 for t ≥ T , we have

T∫
0

(
n, ∂tϕ

)
dt + (

n0, ϕ(0)
) +

T∫
0

(
n∇(A − V ),∇ϕ

)
dt = 0. (16)

We introduce as well the relative entropy between two density operators � and σ :

S(�,σ ) = Tr
(
�(log� − logσ)

) ∈ [0,∞]. (17)

Some properties of S can be found e.g. in [24]. Our main result is the following.

Theorem 3.1. Let n0 ∈ H 1
per . Then, there exists δ > 0 such that the condition

�[n0] = S(�0, �∞) + 1

2
‖∇(V0 − V∞)‖2

L2 ≤ δ (18)

implies that the system (3a) admits a weak solution (n, A, V ), where n ∈ L∞(0, T , H 1
per ), ∂tn ∈ L2(0, T , H−1

per ), 
A ∈ L2(0, T , H 1

per ), and V ∈ L∞(0, T , H 1
0 (�)). The associated quantum statistical equilibrium � := exp(−(H +A))

satisfies � ∈ L∞(0, T , E+) and H0�H0 ∈ L2(0, T , J1). The free energy satisfies moreover the relation, t a.e.,

d

dt
F[n(t)] = −

∫
�

n(t)|∇(A(t) − V (t))|2dx. (19)

Finally, the solutions converge exponentially fast to the equilibrium: there exists μ > 0 such that

F[n(t)] −F[n∞] ≤ (F[n(0)] −F[n∞]) e−μt . (20)

Some comments are in order. The condition (18) expresses that the initial state has to be sufficiently close to 
the equilibrium. It is a crucial point for the derivation of the bound from below for the density. The proof of the 
latter exploits the Sobolev embedding H 1(�) ⊂ L∞(�), which is only valid in a one-dimensional setting. In higher 
dimensions, the condition (18) alone without the use of the embedding does not seem to be sufficient, and we are 
therefore limited to the 1D case since the bound from below is a key ingredient. Besides, the inequality (20) implies 
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the exponential convergence of � to �∞ in J2. We have indeed, since �∞ is a minimizer of the free energy under the 
global constraint,

0 ≤ F(�(t)) − F(�∞) =F[n(t)] −F[n∞],
and we will see further in Lemma 4.15, in conjunction with the Klein inequality of Lemma 4.1, that

C‖�(t) − �∞‖2
J2

≤ S(�(t), �∞) ≤ F(�(t)) − F(�∞) ≤ C′e−μt . (21)

The exponential convergence is obtained by deriving a non-commutative logarithmic Sobolev inequality in the 
spirit of [4]. Denoting by n the lower bound for the density n that will be obtained in the proof of Theorem 3.1, we 
will show that

F(�) − F(�∞) ≤ Cn−1‖√n∇(A − V )‖2
L2(�)

, (22)

that can be recast in a more standard form as follows. For the sake of simplicity of the exposition, suppose here that 
‖n0‖L1 = 1, and therefore Tr(�) = 1, and suppose as well that electrostatic effects can be neglected so the Poisson 
potential V is zero. This implies in particular that A∞ is a constant. Introducing the operator L = −[H, [H, ·]]/2, 
a simple informal calculation based on the cyclicity of the trace and on the commutation between H +A and � shows 
that (see [6] for more details),

‖√n∇A‖2
L2(�)

= ‖√n∇(A − A∞)‖2
L2(�)

= Tr
(∇(A − A∞) · ∇(A − A∞)�

)
= −1

2
Tr

(
(A − A∞)[�, [A − A∞, �]])

= −Tr
(
(A − A∞)L�

) = Tr
(
(log� − log�∞)L�

)
.

Together with (21) and (22), this leads to

CS(�,�∞) ≤ Tr
(
(log� − log�∞)L�

)
.

When the latter holds for any density operator �, the above inequality is referred to as a modified Log-Sobolev 
inequality of constant C (for the operator L), see [4]. Here, the inequality holds for our solution � but clearly does not 
hold for all density operators, as any operator of the form f (H) cancels the right-hand side (as Lf (H) = 0), leading 
to �∞ = f (H) which is absurd when f (x) �= e−x . Note that the operator L naturally arises in the derivation of QDD 
from the quantum Liouville equation, since the weak form of (3a) can be expressed formally as (when V = 0),

Tr
([

∂t� −L�
]
ϕ
) = 0, ∀ϕ.

The proof of Theorem 3.1 is decomposed into several steps. In section 4.1, we state various lemmas important for 
the proof. In section 4.2, we derive a uniform bound from below for the density nk solution to the semi-discretized 
QDD. This leads to uniform bounds for nk , Ak and Vk , which allow us, using classical compactness arguments, to pass 
to the limit in (10a) and to recover (3a). This is done in section 4.3.1. Obtaining the closure relation (3c) is the more 
difficult and interesting part. This is done by in section 4.3.2 by deriving some stability estimates for local minimizers 
of the form of Theorem 2.2, and by using the representation formula (7). Finally, the exponential convergence is 
addressed in section 4.4, and is a consequence of the inequality (22) and the dissipation of the free energy (19) proved 
in section 4.3.3.

4. Proof of the theorem

We start with a series of technical lemmas that will be used throughout the proof.

4.1. Preliminary technical results

The first lemma below is crucial and provides us with a lower bound for the relative entropy. It is taken from [18], 
Theorem 3.
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Lemma 4.1 (The local minimization problem). For all �1 and �2 in E+, we have

CTr
(
(1 + | log�2|)(�1 − �2)

2) ≤ S(�1, �2),

where C is independent of �1 and �2, and S is the relative entropy introduced in (17).

The next lemma, proved in [20], shows that the entropy Tr
(
β(�)

)
is well defined for density operators in E+.

Lemma 4.2. There exists C > 0, such that, for all � ∈ E+,

−Tr
(
β(�)

) ≤ C
(
Tr

√
H0�

√
H0

)1/2 (23)

Tr
(|β(�)|) ≤ C‖�‖E . (24)

We will need as well the following Lieb–Thirring type inequalities (the elementary proof based on a series expan-
sion of n[�] in terms of the spectral elements of � can be found in [22], Lemma 5.3):

Lemma 4.3. Suppose � is self-adjoint and belongs to E . Then, the following estimates hold:

‖n[�]‖C0(�) ≤ C‖�‖1/4
J2

‖�‖3/4
E (25)

‖∇n[�]‖L2 ≤ C‖�‖1/4
J1

‖�‖3/4
E . (26)

The lemma below provides us with additional regularity on the local minimizer knowing the potential in the Hamil-
tonian is in L2(�). This will be an important point in the identification of the limit version of (10c). The proof is given 
in the Appendix.

Lemma 4.4. (Regularity of the minimizer). Let W ∈ L2(�) and define � = exp(−(H0 + W)). Then � ∈ E+ and 
H0�H0 ∈ J1, with the estimate

Tr
(
H0�H0

) ≤ C + C
(
1 + ‖W‖2

L2

)‖�‖E . (27)

The next two lemmas are classical results about eigenvalues and eigenvectors of density operators. The proofs can 
be found for instance in [20], Lemmas A.1 and A.2.

Lemma 4.5. Let � ∈ E+ and denote by (ρp)p∈N the eigenvalues of � (nonincreasing and counted with multiplicity), 
associated to the orthonormal family of eigenfunctions (φp)p∈N. Denote by (λp[H])p∈N the eigenvalues of some 
nonnegative self-adjoint Hamiltonian H with compact resolvant. Then we have

Tr
(√

H�
√
H

) =
∑
p∈N

ρp

(√
Hφp,

√
Hφp

) ≥
∑
p∈N

ρp λp[H].

Lemma 4.6. Let � and �N be two nonnegative trace class operators such that �N converges strongly to � in L(L2(�)), 
and denote by (ρp)p∈N and (ρN

p )p∈N the eigenvalues of � and �N . Then, there exist a sequence of orthonormal 
eigenbasis (φN

p )p∈N of �N , and an orthonormal eigenbasis (φp)p∈N of �, such that,

∀p ∈N, lim
N→∞ρN

p = ρp, lim
N→∞‖φN

p − φp‖L2(�) = 0.

The last lemma allows us to identify the free energies F(�) and F[n], respectively defined in (6) and in (11), when 
� is the minimizer of F and when n = n[�]. We obtain as well some bounds on the relative entropy between two 
minimizers in terms of the difference of their associated potentials and densities.

Lemma 4.7. Let A ∈ L2(�), and define � = exp(−(H + A)) with the notation n ≡ n[�]. Let moreover W1 and W2
be in L2(�), with �i = exp(−(H0 + Wi)), ni ≡ n[�i], i = 1, 2. Denote by (n∞, A∞, V∞) the solution to the global 
minimization problem of Theorem 2.1 with N = Tr(�). For F(�) the free energy of � defined in (6), V ≡ V [n] the 
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Poisson potential, �[n] defined in (12) and S(�i, �j ) the relative entropy between �i and �j defined in (17), we have 
the relations:

F(�) = −(A + 1, n) + 1

2
‖∇V ‖2

L2 (28)

�[n] = S(�,�∞) + 1

2
‖∇(V − V∞)‖2

L2 (29)

S(�1, �2) + S(�2, �1) ≤ (W2 − W1, n1 − n2). (30)

Proof. The proof essentially consists in justifying the straightforward formal calculations. According to Lemma 4.4, 
we have � ∈ E+ and H0�H0 ∈ J1 since V0 + A ∈ L2(�), and therefore

Tr
(√

H0�
√

H0
) = Tr

(
�H0

)
.

In the same way, the above regularity ensures that

Tr
(
� log�

) = −Tr
(
�(H0 + V0 + A)

)
,

which leads to (28) following the definition of F(�). Regarding (30), we have again from Lemma 4.4 that �i ∈ E+
and H0�iH0 ∈ J1. This implies in particular from (25) that n[�i] ∈ L∞(�), and from (24) that Tr

(
�i log�i

)
is finite. 

Similarly, since log�j = −H0 − Wj , Tr
(
�i log�j

)
is finite. As a consequence

S(�i, �j ) = Tr
(
�i(log�i − log�j )

)
= −(ni,Wi − Wj),

which leads to (30) summing S(�1, �2) and S(�2, �1). The relation (29) is obtained by setting Wi = V0 + A and 
Wj = V0 +A∞ (which is in L2(�) according to Theorem 2.1) in the latter equation and by identifying with (12). �

The first step of the proof is to obtain uniform estimates for the semi-discrete problem (10a)–(10c).

4.2. Uniform estimates for the semi-discrete problem

Let n0 ∈ H 1
per ⊂ C0(�) be the initial density of Theorem 3.1. We will prove in Proposition 4.9 further that the 

condition (18) on the initial relative entropy S(�0, �∞) implies that n0(x) > 0 on �. As a consequence, we obtain 
from Theorem 2.3 a unique sequence of solutions (nk, Ak, Vk)k∈N to the semi-discretized problem. We define then 
�k := exp(−(H + Ak)), which belongs to E+ according to Lemma 4.4 since Ak ∈ H 1

per . By construction, we have 
n[�k] = nk , and according to Theorem 2.2, �k is the unique minimizer of the free energy F(�) under the constraint 
n[�] = nk . We introduce moreover the notation Fk := F(�k). Note that since H0�kH0 ∈ J1 by Lemma 4.4, we have 
Fk =F[nk] according to (28), which will be used throughout the proof.

We have then the following lemma:

Lemma 4.8. The solution to the semi-discretized system (10a)–(10c) satisfies, ∀k ∈ N,

‖�k‖E ≤ C (31)

‖nk‖H 1 ≤ C (32)

|Fk| ≤ C, (33)

for a constant C independent of k and �t .

Proof. First, we have from the decay of the free energy stated in (14) that Fk ≤ F0, ∀k ∈ N. Then, estimate (23) and 
the Young inequality yield from the definition of F(�k),

CTr
(√

H0�k

√
H0

) + Tr
(
V0�k

) ≤ Fk ≤ F0.

Since V0 ∈ L∞(�), the trace term involving V0 can be bounded by
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‖V0‖L∞‖�k‖J1 = ‖V0‖L∞‖nk‖L1 = ‖V0‖L∞‖n0‖L1

thanks to the conservation of the L1 norm of nk given in (13). Along with Tr(�k) = ‖n0‖L1 , this proves (31). Estimate
(32) is a consequence of (31), (25), and (26). The bound (33) is direct since following (23) and (31),

−C ≤ −C
(

Tr
(√

H0�k

√
H0

))1/2 − ‖V0‖L∞‖n0‖L1 ≤ Fk ≤ F0.

This ends the proof. �
The next proposition is crucial, and provides us with a uniform bound from below for the local density nk.

Proposition 4.9 (Bound from below for the density). Let n0 ∈ H 1
per , nonnegative. Then, with �[n0] defined in (18), 

there exists δ > 0, and n > 0 independent of k and �t such that the condition

�[n0] ≤ δ

implies

nk(x) ≥ n, ∀k ∈N, ∀x ∈ �.

Proof. Suppose first that the lower bound is satisfied for k = 0, so that the hypotheses of Theorem 2.3 on the initial 
condition n0 hold. We treat the case k = 0 at the end of the proof. The key fact is that the first term in the definition of 
�[nk] is the relative entropy between �k and �∞, that is, according to (29) and (13),

−
∫
�

(nk(Ak − A∞) + nk − n∞) dx = S(�k,�∞) = Tr
(
�k(log(�k) − log(�∞)

)
.

The inequality of Lemma 4.1 then implies that, for all k ∈N
∗,

‖�k − �∞‖2
J2

≤ CS(�k,�∞).

Since S(�k, �∞) ≤ �[nk] ≤ �[n0] for all k according to (15), we conclude from �[n0] ≤ δ that

‖�k − �∞‖2
J2

≤ Cδ.

Besides, (25) yields

‖nk − n∞‖C0(�) ≤ C‖�k − �∞‖1/4
J2

(‖�k‖E + ‖�∞‖E )3/4 , (34)

which, together with (31) and Theorem 2.1 for the fact that �∞ ∈ E+, leads to

‖nk − n∞‖C0(�) ≤ Cδ1/8, ∀k ∈N
∗.

Since finally n∞(x) ≥ n∞ on � according to Theorem 2.1, this concludes the proof for k ∈N
∗ by setting δ sufficiently 

small.
When k = 0, a similar argument carries over: let �0 be the unique solution to the minimization problem of Theo-

rem 2.2 with constraint n0. According to this latter theorem, �0 belongs to E+. Then (34) holds, and the lower bound 
is obtained as above. This ends the proof. �
Remark 4.10. We investigate here the dependency of the parameter δ of Proposition 4.9 on some important physical 
parameters. We consider a periodic domain of length L, and include an appropriately rescaled Planck constant ε in 
the free Hamiltonian H0, i.e. H0 = −ε2�. Based on the inequality

C‖ϕ‖L∞(0,L) ≤ L−1/2‖ϕ‖L2(0,L) + ‖ϕ‖1/2
L2(0,L)

‖ϕ′‖1/2
L2(0,L)

,

the Lieb–Thirring estimate used in the proof of Proposition 4.9 becomes, with u = �k − �∞,
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C‖n[u]‖L∞(0,L) ≤ (Lε)−1‖u‖1/2
J2

(
Tr

(√
H0|u|√H0

))1/2

+ ε−3/2‖u‖1/4
J2

(
Tr

(√
H0|u|√H0

))3/4
,

where C is a constant independent of u, ε and L. The latter estimate is derived by adapting the proof of (25) given 
in [22]. Moreover, Lemma 4.1 can be refined by, see e.g. [5],

‖�k − �∞‖2
J2

≤ ‖�k − �∞‖2
J1

≤ 1

2
S(�k,�∞) ≤ δ

2
.

The decay of the free energy implying that Tr
(√

H0�k

√
H0) ≤ C, with a similar relation for �∞, independently of L

and ε, we find, following the lines of the proof of Proposition 4.9,

‖n[u]‖L∞(0,L) ≤ C
δ1/4

Lε
+ C

δ1/8

ε3/2 := C0(δ, ε,L).

We quantify now a lower bound for n[�∞], neglecting for simplicity the Poisson potential and V0, and assuming 
Tr(�∞) = 1. In this case, the ground state is the constant function 1/L1/2. Hence,

n[�∞] ≥ e−A∞L−1, with e−A∞ =
(

Tr(e−H0)
)−1 ∼ ε,

and we obtain finally

n[�k] ≥ e−A∞L−1 − C0(δ, ε,L).

This shows that δ must decrease sufficiently fast to zero as ε → 0 for the strict lower bound to hold, and in that case 
the latter goes to zero as ε → 0 and the size of the domain increases. This means in particular that the study of the 
semi-classical limit of QDD would require a different strategy than the one we adopted here since our estimates are 
not uniform in ε.

We will need in addition the following bound on Ak.

Corollary 4.11. We have the estimate

‖Ak‖H−1
per

≤ C, ∀k ∈N,

for a constant C independent of k and �t .

Proof. The estimate is a consequence of the representation formula (7): we have first, thanks to Proposition 4.9, 
Lemma 4.2 and (31),

∥∥∥∥n[∇�k∇] − n[�k log�k]
nk

∥∥∥∥
L1

≤ 1

n

(
Tr

(√
H0�k

√
H0

) + Tr
(|β(�k)|

) + Tr
(
�k

)) ≤ C.

On the other hand,

∥∥∥∥�nk

nk

∥∥∥∥
H−1

per

≤ 1

n
‖nk‖H 1 + 1

n2 ‖nk‖2
H 1 ≤ C,

by Proposition 4.9 and (31). This, together with V0 ∈ L∞(�), concludes the proof. �
The next step of the proof is to define approximations of (n, A, V ) from (nk, Ak, Vk)k∈N and to pass to the limit.
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4.3. Passing to the limit

Let T > 0, and for N ≥ 1, set �t = T/N in (10a). We define n̂N (t, x), ÂN (t, x) and V̂N (t, x) as the following 
piecewise constant functions, for (t, x) ∈ (0, T ) × �:

n̂N (t, x) = nk+1(x)

ÂN(t, x) = Ak+1(x)

V̂N (t, x) = Vk+1(x)

⎫⎬
⎭ when t ∈ (k�t, (k + 1)�t], k = 0, · · · ,N − 1.

We define in the same way the operator �̂N(t). From the semi-discretized equation (10a), we deduce that the functions 
n̂N , V̂N and ÂN satisfy, for all ϕ ∈ C1([0, T ], H 1

per ), with ϕ = 0 for t ≥ T ,

1

�t

T∫
0

(
n̂N (t) − n̂N (t − �t),ϕ(t)

)
dt

=
T∫

0

(
n̂N (t − �t)∇(ÂN (t) − V̂N (t)),∇ϕ(t)

)
dt.

We recast the left-hand side as

1

�t

T∫
0

(
n̂N (t) − n̂N (t − �t),ϕ(t)

)
dt (35)

= 1

�t

T −�t∫
0

(
n̂N (t), ϕ(t) − ϕ(t + �t)

)
dt

+ 1

�t

T∫
T −�t

(
n̂N (t), ϕ(t))dt − 1

�t

0∫
−�t

(
n̂N (t), ϕ(t + �t))dt

:= T N
1 + T N

2 + T N
3 .

In the last term above, we include the initial condition by replacing n̂N(t) by n0 for t ∈ (−�t, 0). The first step is 
to pass to the limit in (35) in order to recover the weak formulation (16). We will need for this the estimates given the 
next proposition.

Proposition 4.12. The following uniform bounds hold:

‖n̂N‖L∞(0,T ,H 1) ≤ C (36)

n ≤ n̂N (t, x), ∀(t, x) ∈ (0, T ) × � (37)

‖V̂N‖L∞(0,T ,H 2) ≤ C (38)

‖(ÂN )�‖L2(0,T ) ≤ C (39)

‖ÂN‖L2(0,T ,H 1) ≤ C (40)

‖�̂N‖L∞(0,T ,E) ≤ C (41)

‖H0 �̂N H0‖L2(0,T ,J1)
≤ C. (42)

Above, (ÂN )� denotes the average of ÂN over �, i.e. (ÂN)� = ∫ 1
0 ÂN (x)dx. Moreover, for any h ∈ (−1, 1), and for 

τhn̂N (t, x) := n̂N (t + h, x), with extension n̂N (t, x) = 0 if t /∈ (0, T ], we have

‖τhn̂N − n̂N‖
L1(0,T ,H−1

per )
≤ C

√
h. (43)
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Proof. Estimate (36) follows from (32) and

‖n̂N‖L∞(0,T ,H 1) ≤ sup
k∈N

‖nk‖H 1 .

The bound from below (37) is a consequence of Proposition 4.9. Estimate (38) follows from (36), the Poisson equa-
tion (10b), and elliptic regularity. Estimate (39) is obtained by noticing that

Fk = −(Ak)�

∫
�

nkdx −
∫
�

nk

(
Ak − (Ak)� + 1

)
dx + 1

2

∫
�

|∇Vk|2 dx.

Dividing by ‖nk‖L1 , the latter equation, together with (13), (38), and (33), shows that

|(Ak)�| ≤ C‖∇Vk‖2
L2 + C‖Ak − (Ak)�‖L∞ + C

≤ C + C‖∇Ak‖L2

≤ C + C‖√nk−1∇Ak‖L2 .

In the second line above, the fact that H 1(�) ⊂ L∞(�) and the Poincaré–Wirtinger inequality in order to control 
Ak − (Ak)� in L2(�) by its gradient in L2(�). In the last line, we used the lower bound of Proposition 4.9. Then,

‖(ÂN )�‖2
L2(0,T )

≤ C + C�t

N−1∑
j=0

∫
�

nj |∇(Aj+1 − Vj+1)|2dx

+C‖n̂N‖L1(0,T ,L∞)‖∇V̂N‖L∞(0,T ,L2)

≤ C,

thanks to (14), (36), and (38) for controlling the Poisson potential. Estimate (40) follows then from the bound (14)
on the free energy, the lower bound (37), the bound (38) for the Poisson potential, and a combination of (39) and 
the Poincaré–Wirtinger inequality. Estimate (41) is a consequence of (31). Regarding (42), we remark first that 
‖ÂN‖

L∞(0,T ,H−1
per )

≤ C according to Corollary 4.11. Together with (40) and standard interpolation, we can conclude 

that ‖ÂN‖L4(0,T ,L2) ≤ C. The result then follows from (27) and (31).
We turn now to estimate (43). Let t ∈ (0, T ) with t /∈ U := {kT /N, N ∈N

∗, k = 0, · · · , N}, and let first h ∈ [0, 1). 
Write then t = k1�t + r1 and h = k2�t + r2, where k1 and k2 are integers, and where r1 ∈ (0, �t), r2 ∈ [0, �t). When 
r1 + r2 ≤ �t , we have, for any ϕ ∈ C1([0, T ], H 1

per ),

IN(t, h)(ϕ) := (n̂N (t + h) − n̂N (t), ϕ) = (nk1+1+k2 − nk1+1, ϕ),

with nk = 0 for k > N , while when r1 + r2 > �t , we have

IN(t, h)(ϕ) = (nk1+2+k2 − nk1+1, ϕ).

Let us start with the case r1 + r2 ≤ �t . Using (10a), we can recast IN as the telescopic sum (below, a ∧b = min(a, b)),

IN(t, h)(ϕ) =
(k1+k2)∧N∑
p=k1+1

(np+1 − np,ϕ) = �t

(k1+k2)∧N∑
p=k1+1

(np∇(Ap+1 − Vp+1),∇ϕ).

Hence, the Cauchy–Schwarz inequality leads to

|IN(t, h)(ϕ)| ≤ √
k2�t ‖∇ϕ‖L2 sup

p=1,··· ,N
‖√np‖L∞

×
⎛
⎝�t

(k1+k2)∧N∑
p=k1+1

‖√np∇(Ap+1 − Vp+1)‖2
L2

⎞
⎠

1/2

.

Together with (14) and (32), this yields by duality, since k2�t ≤ h,

‖n̂N (t + h) − n̂N (t)‖ −1 ≤ C
√

h, ∀N ∈ N
∗, ∀h ∈ [0,1),
Hper
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which holds for all t /∈ U . Note that the latter inequality cannot hold for t ∈ U since when t = kT
N

for instance, then 
n̂N (t) = nk while n̂N (t + h) = nk+1 for h ∈ (0, �t). We find the same estimate when r1 + r2 > �t . Since U is 
countable and therefore of Lebesgue measure zero, we obtain (43) when h ≥ 0. The case h < 0 follows similarly. This 
ends the proof of the proposition. �
4.3.1. Passing to the limit in the weak formulation (35)

We have now all the required estimates to obtain (16).

Compactness. For a finite constant C > 0 and |h| < 1, h �= 0, let S be the set defined by

S = {
u ∈ L∞(0, T ,L2(�)), ‖u‖L∞(0,T ,H 1) + h−1/2‖τhu‖

L1(0,T ,H−1
per )

≤ C
}
,

where τhu(t) := u(t + h). Then S is relatively compact in L2(0, T , L2(�)) as an application of the Riesz–Fréchet–
Kolmogorov criterion: Indeed, for (ht , hx) ∈ (−1, 1) × (−1, 1), let Thx,ht u(t, x) := u(t + ht , x + hx), where u is 
extended by zero when t + ht /∈ (0, T ). Then,

‖Tht ,hx u − u‖L2(�) ≤ ‖Tht ,hx u − Tht ,0u‖L2(�) + ‖Tht ,0u − u‖L2(�). (44)

For the last term, we write

‖Tht ,0u − u‖2
L2(�)

= (
Tht ,0u − u,Tht ,0u − u

) ≤ ‖Tht ,0u − u‖
H−1

per
‖Tht ,0u − u‖H 1

≤ 2‖u‖L∞(0,T ,H 1)‖Tht ,0u − u‖
H−1

per
.

Integrating in time and using the bounds given in the definition of S, this yields

‖Tht ,0u − u‖L2(0,T ,L2) ≤ C|ht |1/4, ∀u ∈ S. (45)

The remaining term in (44) is standard owing to the H 1 regularity in the spatial variable and we find

‖Tht ,hx u − Tht ,0u‖L2(0,T ,L2) ≤ C|hx |1/2, ∀u ∈ S.

This shows the relative compactness of S in L2(0, T , L2(�)).
Now, according to (36) and (43), the sequence (n̂N)N∈N∗ belongs to S for an appropriate C. There exists therefore 

n ∈ L2(0, T , L2(�)), and a subsequence (still denoted by (n̂N)N∈N∗ ; this abuse of notation will consistently be done 
with any subsequences), such that n̂N → n strongly in n ∈ L2(0, T , L2(�)). The bound (36) implies moreover that 
n ∈ L∞(0, T , H 1

per ), and (45) with u ≡ n̂N shows that n̂N and τ�t n̂N have the same strong limit. Furthermore, we 

conclude from (40) that, along subsequences, ÂN → A weakly in L2(0, T , H 1
per ) for some A ∈ L2(0, T , H 1

per ), and 

from (38) that V̂N → V weakly-∗ in L∞(0, T , H 1
0 (�)) for some V ∈ L2(0, T , H 1

0 (�)). We can now pass to the limit 
in (10a).

The limit. According to what we have found above, we have, for all ϕ ∈ C2([0, T ], H 1
per ), with ϕ = 0 for t ≥ T ,

lim
N→∞

T∫
0

(
n̂N (t − �t)∇(ÂN (t) − V̂N (t)),∇ϕ(t)

) =
T∫

0

(
n(t)∇(A(t) − V (t)),∇ϕ(t)

)
.

It remains to treat the terms T N
1 , T N

2 and T N
3 in (35). We have for T N

1 , and some t0(t) ∈ (t, t + �t):

T N
1 = −

T −�t∫
0

(n̂N (t), ∂tϕ(t))dt − �t

2

T −�t∫
0

(n̂N (t), ∂2
t t ϕ(t0(t)))dt.

The first term converges to

−
T∫
(n(t), ∂tϕ(t))dt
0
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since n̂N converges to n strongly in L2(0, T , L2(�)) as mentioned before, while the second one converges to zero 
thanks to (36). For T N

2 , we use the fact that ϕ(t) = ∂tϕ(t) = 0 for t ≥ T , which leads to, for some t1(t) ∈ (t, T ),

T N
2 = 1

�t

T∫
T −�t

(n̂N (t), ϕ(t) − ϕ(T ))dt

= 1

2�t

T∫
T −�t

(t − T )2(n̂N (t), ∂ttϕ(t1(t))dt.

The last term can be controlled by

C�t‖n̂N‖L∞(0,T ,L2),

and therefore goes to zero as N → ∞. The term T N
3 is straightforward and yields

lim
N→∞T N

3 = −(n0, ϕ(0)).

We therefore recover the weak formulation (16). The lower bound on the density is obtained as follows: from the 
strong convergence of n̂N in L2(0, T , L2(�)), we deduce that there exists a subsequence such that n̂N → n almost 
everywhere in (0, T ) × �. Passing to the limit in (37) leads to

n ≤ n, a.e. (0, T ) × �.

Finally, the fact that ∂tn ∈ L2(0, T , H−1
per ) follows directly by duality since, for any ϕ smooth supported in (0, T ),

∣∣∣∣∣∣
T∫

0

(n, ∂tϕ)dt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

T∫
0

(n∇(A − V ),∇ϕ)dt

∣∣∣∣∣∣
≤ ‖n‖L∞(0,T ,L∞)‖∇(A − V )‖L2(0,T ,L2)‖∇ϕ‖L2(0,T ,L2)

≤ C‖∇ϕ‖L2(0,T ,L2).

We turn now to the derivation of the relation between the limiting n and A, which is the most delicate part of the 
proof.

4.3.2. Passing to the limit in the closure relation (10c)
The proof requires more work than the previous direct limit. The starting point is to consider �̂N = exp(−(H +

ÂN)), which is the solution to the local minimization problem with constraint n̂N . For A and n the limits of ÂN

and n̂N obtained before, the goal is to show that �̂N converges to exp(−(H + A)), where n[exp(−(H + A))] = n. 
The main difficulty is that we only have weak convergence of ÂN with respect to the time variable. With at least 
almost sure convergence in time and strong convergence in space, it would be direct to conclude from classical 
perturbation theory that the expected limit holds. Here, we need to proceed differently, and the key ingredients are the 
representation formula (7) and the stability estimate (30). The latter allows us (i) to show that the limit of �̂N is of the 
form exp(−(H + Aeq)) and (ii) to transfer the strong convergence in time of n̂N to �̂N , while the former allows us to 
conclude that Aeq = A.

The first step is to obtain more compactness results.

Step 1: more compactness. We deduce first from (13) that

‖�̂N‖L∞(0,T ,J1) = ‖Tr
(
�̂N

)‖L∞(0,T ) = ‖n̂N‖L∞(0,T ,L1) = ‖n0‖L1 .

We can therefore extract a subsequence such that �̂N → � weakly-∗ in L∞(0, T , J1). In the same way, we con-
clude from (41) that 

√
H0�̂N

√
H0 → √

H0�
√

H0 weakly-∗ in L∞(0, T , J1), and from (42) that H0�̂NH0 → H0�H0
weakly-∗ in L2(0, T , J1). If we assume temporarily that � is indeed our expected limit, i.e. � = exp(−(H + A)), we 
obtain in particular the regularity stated in Theorem 3.1, that is � ∈ L∞(0, T , E+) and H0�H0 ∈ L2(0, T , J1).
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Consider then the limit n of n̂N , which belongs to L∞(0, T , H 1
per ), and verifies n ≤ n, a.e. in (0, T ) ×�. According 

to Theorem 2.2, the free energy F(u) admits a unique minimizer under the local density constraint n[u] = n(t), t
almost everywhere. We denote by �eq[n(t)] ∈ E+ the solution, and by Aeq(t) ∈ H−1

per the corresponding Lagrange 
multiplier. We want to show that Aeq = A. A step towards this is to show that �eq[n] = �, which is a consequence of 
the following lemma, proved at the end of the section.

Lemma 4.13. The chemical potential Aeq belongs to L2(0, T , L2(�)).

The latter lemma allows us to use the stability estimate (30) together with Lemma 4.1 to conclude that, t a.e.,

Tr
(
�eq [n(t)] − �̂N (t)

)2 ≤ C(Aeq(t) − ÂN (t), n̂N (t) − n(t)).

Integrating in time, we find

‖�eq [n] − �̂N‖2
L2(0,T ,J2)

≤ (‖Aeq‖L2(0,T ,L2) + ‖ÂN‖L2(0,T ,L2)

)‖n̂N − n‖L2(0,T ,L2). (46)

The strong convergence of n̂N to n in L2(0, T , L2(�)), together with the bounds (40) and Lemma 4.13, imply that 
�̂N converges to �eq[n]. Since �̂N converges as well to � weakly-∗ in L∞(0, T , J1), this shows that � = �eq [n].

It remains to identify Aeq with A, which is done with the representation formula (7).

Step 2: passing to the limit in the representation formula. According to (7), we know that Aeq reads, since we have 
just proved that � = �eq [n],

Aeq = −V0 + 1

n

(
1

2
�n + n[∇�∇] − n[� log�]

)
. (47)

We want to recover the right-hand side above by passing to the limit in the representation formula for ÂN . We have 
then, for any ϕ ∈ C2([0, T ] × �), periodic in x,

T∫
0

(n̂N ÂN ,ϕ)dt =
T∫

0

( − n̂NV0 + 1

2
�n̂N + n[∇�̂N∇] − n[�̂N log �̂N ], ϕ)

dt

= −
T∫

0

(
n̂NV0, ϕ

)
dt + 1

2

T∫
0

(n̂N ,�ϕ)dt

−
T∫

0

Tr
(∇�̂N∇ ϕ

)
dt −

T∫
0

Tr
(
�̂N log �̂N ϕ

)
dt.

Owing to the weak-∗ convergence of n̂N in L∞(0, T , H 1
per ), passing to the limit in the first two terms in the r.h.s. 

presents no difficulty and yields the sum

−
T∫

0

(
nV0, ϕ

)
dt + 1

2

T∫
0

(n,�ϕ)dt.

Besides, the strong convergence of n̂N in L2(0, T , L2(�)) combined with the weak convergence of ÂN in 
L2(0, T , H 1

per ) show that the l.h.s. converges to

T∫
0

(nA,ϕ)dt.

The two remaining terms are treated as follows: Write, using the cyclicity of the trace in the third line,
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T∫
0

Tr
(∇�̂N∇ ϕ

)
dt

=
T∫

0

Tr
(∇(H0 + I)−1(H0 + I)�̂N (H0 + I)(H0 + I)−1∇ ϕ

)
dt

=
T∫

0

Tr
(
(H0 + I)�̂N (H0 + I)(H0 + I)−1∇ ϕ∇(H0 + I)−1)dt.

From the facts that (H0 + I)−1∇ ϕ∇(H0 + I)−1 is compact and that H0�̂NH0 → H0�̂H0 weakly-∗ in L2(0, T , J1), 
we can conclude that (H0 + I)�̂N (H0 + I) → (H0 + I)�(H0 + I) weakly-∗ in L2(0, T , J1), and therefore that

lim
N→∞

T∫
0

Tr
(∇�̂N∇ ϕ

)
dt =

T∫
0

Tr
(∇�∇ ϕ

)
dt.

Regarding the last term involving �̂N log �̂N , we have the following lemma, proved at the end of the section:

Lemma 4.14. For almost all t in (0, T ), the operator β(�̂N(t)) converges weakly in J1 to β(�(t)).

We then write (mostly for notational convenience),

T∫
0

Tr
(
�̂N log �̂N ϕ

)
dt =

T∫
0

Tr
(
β(�N)ϕ

)
dt +

T∫
0

(n̂N ,ϕ)dt.

Then, according to estimates (24) and (31), we have

|Tr
(
β(�N)ϕ

)| ≤ ‖ϕ‖L∞(0,T ,L∞)‖β(�̂N)‖L∞(0,T ,J1) ≤ C,

which, using dominated convergence together with Lemma 4.14 leads to

lim
N→∞

T∫
0

Tr
(
β(�̂N )ϕ

)
dt =

T∫
0

Tr
(
β(�)

)
dt.

Finally, the latter, together the weak-∗ convergence of n̂N to n in L∞(0, T , H 1
per ), shows that

lim
N→∞

T∫
0

Tr
(
�̂N log �̂N ϕ

)
dt =

T∫
0

Tr
(
� log�ϕ

)
dt.

Collecting the expression of Aeq given in (47), and the various limits that we obtained, we can conclude that Aeq = A. 
Hence, n and A satisfy the closure relation (3c). In order to conclude the proof of existence, it remains to prove 
Lemma 4.13 and Lemma 4.14.

Proof of Lemma 4.13. We show first by duality that �n̂N ∈ L2(0, T , L2(�)). Indeed, for a test function ϕ, we have

T∫
0

(
(� − I)n̂N ,ϕ

)
dt =

T∫
0

Tr
(
�̂N (�ϕ − ϕ)

)
dt.

The latter can be controlled by

‖(� − I)�̂N (� − I)‖L2(0,T ,J )‖(� − I)−1(�ϕ − ϕ)(� − I)−1‖L2(0,T ,L(L2(�))),
1
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which, according to (36), (42) and Sobolev embeddings, can be bounded by C‖ϕ‖L2(0,T ,L2). This shows that the limit 
n of n̂N is such that �n ∈ L2(0, T , L2(�)). We use now the representation formula (7): Aeq reads

Aeq = −V0 + 1

n

(
1

2
�n + n[∇�eq [n]∇] − n[�eq [n] log�eq [n]]

)
.

A direct adaption of [22], Theorem 3, shows that Aeq satisfies the estimate, t a.e.,

‖Aeq(t)‖L2(�) ≤ C

n

(
H0(n(t))

(
1 + 1

n

(‖�n(t)‖L2(�) +H0(n(t))
)))

(48)

+C

n

(
exp

(
C(H1(n(t)))4

))
+ ‖V0‖L2(�),

where n is such that n ≥ n a.e. on (0, T ) × � and

H0(n) = 1 + β(‖n‖L1(�)) + ‖√n‖2
H 1(�)

H1(n) = (
1 + ‖√n‖H 1(�)/

√
n
)
H0(n)/n.

The functions H0(n) and H1(n) appear naturally in these estimates since they control �eq and Aeq as ‖�eq‖E ≤
CH0(n) and ‖Aeq‖

H−1
per

≤ CH1(n). The exponential term in (48) arises from the control of the eigenvalues of �eq

in terms of ‖Aeq‖
H−1

per
, see [22] for more details. Since n ∈ L∞(0, T , H 1

per ) and n ≥ n, we have that H0(n(t)) and 

H1(n(t)) are bounded by a constant independently of t . Since moreover V0 ∈ L∞(�) and �n ∈ L2(0, T , L2(�)), we 
deduce from (48) that Aeq ∈ L2(0, T , L2(�)). This ends the proof.

Proof of Lemma 4.14. We define for s ≥ 0 and some ε > 0,

β(s) = β1(s) + β2(s) := 1s≤εβ(s) + 1s>εβ(s)

and split n[β(�N)] accordingly into n[β1(�N)] + n[β2(�N)]. Let M = supN ‖�̂N‖L∞(0,T ,L(L2)). Then, there exists a 
constant CM > 0 such that

∀s ∈ [0,M], |s log s − s| ≤ CMs3/4.

Thus, for all ε > 0 and (ρN
p )p∈N the (nonincreasing) eigenvalues of �̂N , we have t a.e.,

Tr
(|β1(�̂N (t))|) =

∑
ρN

p (t)≤ε

∣∣∣β(ρN
p (t))

∣∣∣

≤ CM

∑
ρN

p (t)≤ε

(ρp(t)N )3/4 ≤ CMε1/4
∑

ρN
p (t)≤ε

(ρN
p (t))1/2

≤ CMε1/4

⎛
⎝∑

p≥1

p2ρN
p (t)

⎞
⎠

1/2 ⎛
⎝∑

p≥1

1

p2

⎞
⎠

1/2

≤ Cε1/4
(

Tr
√

H0�̂N (t)
√

H0

)1/2 ≤ Cε1/4, (49)

where C is independent of N and t , and where we used Lemma 4.5 with H = H0 and estimate (41). We treat now the 
term

Tr
(
β2(�̂N (t))B

) := fN(t),

where B is a bounded operator. To this aim, denote P(t) = max
{
p : ρp(t) > ε

}
, where (ρp)p∈N is the nonincreasing 

sequence of eigenvalues of �. Recall that as a consequence of (46), �̂N → �, strongly in L2(0, T , J2), and therefore 
that there is a subsequence such that �̂N(t) → �(t), t a.e. in J2. Then, according to Lemma 4.6, we have
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∀p ∈ N, ρN
p (t) → ρp(t), t a.e., (50)

and we can choose N sufficiently large so that, t a.e.,

ρN
p (t) > ε for all p ≤ P(t) and ρN

p (t) < ε for all p > P(t).

Besides, following again Lemma 4.6, we can choose some eigenbasis (φN
p )p∈N and (φp)p∈N of �̂N and �, respectively, 

such that,

∀p ∈ N, lim
N→∞‖φN

p (t) − φp(t)‖L2 = 0, t a.e.. (51)

Finally, the function fN(t) reads

fN(t) =
P(t)∑
p=0

β(ρN
p (t))(φN

p (t),BφN
p (t)).

Then, according to (50)-(51), it follows that

lim
N→∞fN(t) =

P(t)∑
p=0

β(ρp(t))(φp(t),Bφp(t)), t a.e..

Together with estimate (49), this concludes the proof of Lemma 4.14 and the proof of existence.

4.3.3. The free energy derivative
We prove here estimate (19), which is a major ingredient for the exponential convergence to the equilibrium. Con-

sider first a solution (n, A, V ) to the QDD system, and define � := exp(−(H + A)), which belongs to L∞(0, T , E+)

according to Theorem 3.1. Together with V ∈ L∞(0, T , H 1
0 (�)) and (24), this implies that F(�) ∈ L∞(0, T ). Since 

moreover A ∈ L2(0, T , L2(�)), it follows from (28) that F(�) =F[n]. A formal proof of (19) is then direct: write

dF[n(t)]
dt

= −
∫
�

∂tn(A + 1)dx −
∫
�

n∂tAdx.

It is shown in [12] that

0 = d

dt
‖n0‖L1 = d

dt
‖n(t)‖L1 = d

dt
Tr(eH+A(t)) = (n, ∂tA),

and (19) follows by replacing ∂tn by its expression given in (3a). The rigorous justification requires more work since 
we have a priori no information about ∂tA, and a regularization does not seem straightforward. We then use crucially 
here the convexity of the free energy F to justify the calculations. First, the Gâteaux derivative of F at � exists in any 
direction u ∈ J1. Indeed, a direct calculation shows that

DF [�](u) = Tr
(
(log� + H0 + V0 + V )u

) = Tr
(
(V − A)u

) = (V − A,n[u]),
which is finite whenever u ∈J1 since (A −V )(t) ∈ L∞(�) almost everywhere in t . By convexity of F , we have then, 
for t a.e. in (0, T ), for h sufficiently small that t + h ∈ (0, T ),

F(�(t + h)) − F(�(t)) ≥ DF [�(t)](�(t + h) − �(t))

= (V (t) − A(t), n(t + h) − n(t)). (52)

In the same way, for t − h ∈ (0, T ),

F(�(t)) − F(�(t − h)) ≤ DF [�(t)](�(t) − �(t − h))

= (V (t) − A(t), n(t) − n(t − h)). (53)

Integrating (53) between h and s ∈ (0, T ), we find
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h−1

s∫
s−h

F (�(t))dt − h−1

h∫
0

F(�(t))dt = h−1

s∫
h

(F (�(t)) − F(�(t − h)))dt

≤ h−1

s∫
h

t∫
t−h

〈∂τ n(τ),V (t) − A(t)〉
H−1

per ,H
1
per

dτdt.

Since F(�) ∈ L∞(0, T ), the Lebesgue differentiation theorem yields, s a.e. in (0, T ),

lim
h→0

⎛
⎝h−1

s∫
s−h

F (�(t))dt − h−1

h∫
0

F(�(t))dt

⎞
⎠ = F(�(s)) − F(�(0)).

On the other hand, since ∂tn ∈ L2(0, T , H−1
per ), and (V − A) ∈ L2(0, T , H 1

per ) according to Theorem 3.1, invoking 
again the Lebesgue differentiation theorem shows that, t a.e.,

lim
h→0

h−1

t∫
t−h

〈∂τ n(τ),V (t) − A(t)〉
H−1

per ,H
1
per

dτ = 〈∂tn(t),V (t) − A(t)〉
H−1

per ,H
1
per

.

Dominated convergence then allows us to conclude that (we use here the maximal function of 〈∂tn(t), V (t) −
A(t)〉

H−1
per ,H

1
per

as dominating function),

lim
h→0

s∫
h

h−1

t∫
t−h

〈∂tn(τ ),V (t) − A(t)〉
H−1

per ,H
1
per

dτdt =
s∫

0

〈∂tn(t),V (t) − A(t)〉
H−1

per ,H
1
per

dt,

and therefore

F(�(s)) − F(�(0)) ≤
s∫

0

〈∂tn(t),V (t) − A(t)〉
H−1

per ,H
1
per

dt.

Proceeding as above, the other convexity inequality (52) shows that the above inequality is in fact in equality. This 
means in particular that F(�(s)) is absolutely continuous, and that the almost everywhere defined derivative satis-
fies (19), after replacing ∂tn by its expression in the QDD equation (3a). This ends the proof.

4.4. Exponential convergence to the equilibrium

The main ingredients are the expression of the time derivative of the free energy given in (19), together with some 
logarithmic-Sobolev type inequality derived from (30). The first step is to rewrite appropriately (30) and to specialize 
it to our problem.

For Wi ∈ L2(�), i = 1, 2, �i = exp(−(H0 + Wi)), ni ≡ n[�i] and Vi ≡ V [ni] the Poisson potential, we rewrite 
estimate (30) as

S(�1, �2) + S(�2, �1) = (W2 − W1, n1 − n2)

= (W2 − V2 − W1 + V1, n1 − n2) − (V1 − V2, n1 − n2)

= (W2 − V2 − W1 + V1, n1 − n2) − ‖∇(V1 − V2)‖2
L2 .

Above, we used the Poisson equation to obtain the last term. Denote by (n∞, A∞, V∞) the solution to the stationary 
problem of Theorem 2.1 with constraint Tr(�∞) = ‖n0‖L1 , where n0 is the initial condition. Introduce similarly a 
solution (n, A, V ) to the QDD system. With W1 = V0 + A and W2 = V0 + A∞, n1 = n, n2 = n∞, �1 = �, �2 = �∞, 
V1 = V , V2 = V∞, using the facts that A∞ − V∞ is equal to the constant −εF and that (1, n − n∞) = 0, we find

S(�,�∞) + S(�∞, �) = (−εF − A + V,n − n∞) − ‖∇(V − V∞)‖2
L2

= −(A − V − (A − V )�,n − n∞) − ‖∇(V − V∞)‖2
2,
L
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where we recall that (A − V )� is the average of A − V over �. Since S(�∞, �) ≥ 0, the latter equality implies, 
together with the inclusion H 1(�) ⊂ L∞(�) and the Poincaré–Wirtinger inequality, that

S(�,�∞) + 1

2
‖∇(V − V∞)‖2

L2 ≤ ‖A − V − (A − V )�‖L∞(�)‖n − n∞‖L1(�)

≤ C‖A − V − (A − V )�‖H 1(�)‖n − n∞‖L1(�)

≤ C‖∇(A − V )‖L2(�)‖n − n∞‖L1(�). (54)

The second step of the proof is to relate the l.h.s. of the above inequality to the free energy, and the r.h.s. to the 
dissipation rate of the free energy appearing in (19). The first part follows from the straightforward lemma below, 
proved at the end of the section.

Lemma 4.15. The free energy satisfies, t a.e.,

F(�(t)) − F(�∞) = S(�(t), �∞) + 1

2
‖∇(V (t) − V∞)‖2

L2 .

As a consequence, the l.h.s. of (54) is simply the difference of the free energies F(�(t)) − F(�∞). It remains now 
to relate the r.h.s.. The next key lemma, proved further and based on (54) and the Klein inequality of Lemma 4.1, 
allows us to control n − n∞ in L1(�) in terms of ∇(A − V ) in L2(�).

Lemma 4.16. The following estimate holds:

‖n − n∞‖L1(�) ≤ C‖∇(A − V )‖L2(�).

At this point, we have therefore obtained the inequality

F(�(t)) − F(�∞) ≤ C‖∇(A − V )(t)‖2
L2(�)

.

Using the fact that n ≥ n, a.e. on (0, T ) × �, we can exhibit the free energy dissipation rate in r.h.s. in order to obtain

F(�(t)) − F(�∞) ≤ Cn−1‖√n(t)∇(A − V )(t)‖2
L2(�)

. (55)

As mentioned in the introduction, this inequality can be seen as non-commutative log-Sobolev inequality for the 
operator �. We have everything needed now to conclude: according to (19), t almost everywhere,

d

dt
F (�(t)) = d

dt
(F (�(t)) − F(�∞)) = −

∫
�

n(t)|∇(A(t) − V (t))|2dx.

This, together with (55) leads to

d

dt
(F (�(t)) − F(�∞)) + C (F(�(t)) − F(�∞)) ≤ 0,

and the conclusion follows from the Gronwall lemma. It remains to prove Lemmas 4.15 and 4.16.

Proof of Lemma 4.16. The first step is to obtain the estimate below:

‖n − n∞‖L1(�) ≤ C‖(� − �∞)(1 + |H + A∞|)1/2‖J2 . (56)

We proceed as usual by duality. Let u = � − �∞ and R = 1 + |H + A∞|. Then, for any smooth function ϕ,

|(n[u], ϕ)| = ∣∣Tr
(
uϕ

)∣∣ =
∣∣∣Tr

(
uR1/2R−1/2ϕ

)∣∣∣
≤ ‖uR1/2‖J2‖R−1/2ϕ‖J2 .

For (λp, up)p∈N the spectral elements of R, and (ek)k∈N any basis of L2(�), the last term satisfies
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‖R−1/2ϕ‖2
J2

=
∑
k∈N

∥∥∥R−1/2ϕek

∥∥∥2

L2(�)
=

∑
k∈N

∑
p∈N

∣∣∣(R−1/2ϕek,up)

∣∣∣2

=
∑
k∈N

∑
p∈N

λ−1
p

∣∣(ϕek, up)
∣∣2 =

∑
p∈N

λ−1
p

∥∥ϕup

∥∥2
L2(�)

≤ ‖ϕ‖L∞(�)

∑
p∈N

λ−1
p .

Now, since A∞ = V∞ − εF and V∞ ∈ H 1
0 (�), the minimax principle shows that the eigenvalues of H +A∞, indexed 

by p ∈ N, are bounded below by Cp2 + C′, with C > 0, which is positive for p sufficiently large. As consequence 
0 < 1 + Cp2 + C′ ≤ λp for large p, and the sum above is finite. This proves estimate (56).

The second step is to control the r.h.s. of (56) by the relative entropy between � and �∞, with the goal of using (54). 
We exploit for this a slightly different version of the Klein inequality of Lemma 4.1. We claim that

CTr
(
(1 + |H + A∞|)1/2(� − �∞)2(1 + |H + A∞|)1/2) ≤ S(�,�∞). (57)

Together with (56) and (54), this ends the proof of lemma provided we justify (57), which is only a matter of justifying 
the use of the cyclicity of the trace. Take two operators �1 and �2 in E+, with S(�1, �2) < ∞. Let Pk be the spectral 
projector onto the first k modes of �2. According to Lemma 4.1, we have

Tr
(
(1 + | log(Pk�2Pk)|)(Pk�1Pk − Pk�2Pk)

2) ≤ S(Pk�1Pk,Pk�2Pk). (58)

Since (1 + | log(Pk�2Pk)|)1/2 is a bounded operator (indeed the eigenvalues of �2 are positive, nonincreasing, and 
converging to zero), cyclicity of the trace shows that the l.h.s. of the above inequality reads

Tr
(
σk

) := Tr
(
(1 + | log(Pk�2Pk)|)1/2(Pk�1Pk − Pk�2Pk)

2(1 + | log(Pk�2Pk)|)1/2). (59)

It just remains to pass to the limit. According to [18], Theorem 2, we have, since Pk → I strongly in L(L2(�)),

lim
k→∞S(Pk�1Pk,Pk�2Pk) = S(�1, �2). (60)

On the other hand, we conclude from (58), (59) and (60), that there is a σ ∈ J1, nonnegative, such that

σk → σ weak-∗ in J1 and Tr
(
σ
) ≤ lim inf

k→∞ Tr
(
σk

) ≤ S(�1, �2).

Since finally Pk�iPk → �i , strongly in J1 for i = 1, 2, we can identify σ with (1 + | log(�2)|)1/2(�1 − �2)
2(1 +

| log(�2)|)1/2. Indeed we have, for all compact operator K ,

lim
k→∞ Tr

(
σkK

) = Tr
(
σK

)
.

Choosing for instance K = (1 + | log(�2)|)−1/2K0(1 + | log(�2)|)−1/2 for K0 compact then yields the result.

Proof of Lemma 4.15. The proof is a simple calculation. Since A ∈ L2(0, T , L2(�)) and A∞ ∈ L2(�), we can use 
relation (28) of Lemma 4.7 to arrive at

F(�(t)) − F(�∞) = −
∫
�

n(t)(A(t) + 1)dt +
∫
�

n∞(A∞ + 1)dt

+1

2
‖∇V (t)‖2

L2 − 1

2
‖∇V∞‖2

L2

= −
∫
�

(n(t)(A(t) − A∞) + n(t) − n∞) dt

+
∫

n∞A∞dt −
∫

nA∞dt + 1

2
‖∇V (t)‖2

L2 − 1

2
‖∇V∞‖2

L2 .
� �
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Using the facts that A∞ −V∞ = εF is constant, that ‖n(t)‖L1 = ‖n∞‖L1 = ‖n0‖L1 , and that −�(V −V∞) = n −n∞
equipped with Dirichlet boundary conditions, we obtain the desired result. This ends the proof of the lemma and of 
the convergence to the equilibrium.
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Appendix. Proof of Lemma 4.4

We work with a regular periodic potential V ∈ C∞(�) and obtain the final result by density. The Hamiltonian 
H0 + V with domain H 2

per has a compact resolvant, and we denote by (μp, φp)p∈N its spectral decomposition, with 
the sequence (μp)p∈N nondecreasing. The minimax principle shows that

1

2
γp − C‖V ‖2

L2 − C ≤ μp ≤ 3

2
γp + C‖V ‖2

L2 + C,

where γp = (2πp)2 is an eigenvalue of H0. We have moreover the direct estimate

‖∇φp‖2
L2 ≤ C|μp| + C‖V ‖2

L2 + C.

This yields, for � = exp(−(H0 + V )),

Tr
(√

H0�
√

H0
) =

∑
p∈N

e−μp‖∇φp‖2
L2 ≤ C

∑
p∈N

e−Cγp+C(1 + γp) < ∞,

and therefore � ∈ E+. We turn now to estimate (27). There are several ways to control H0�H0 in J1, and since the 
system (10a)–(10c) provides us with direct bounds for � in E+ and for the chemical potential A in L2, we estimate 
H0�H0 in terms of these quantities. We write first

Tr
(
H0�H0

) = Tr
(
(H0 + V )�(H0 + V )

) − Tr
(
(H0 + V )�V

)
−Tr

(
V �(H0 + V )

) + Tr
(
V �V

)
:= T1 + T2 + T3 + T4.

All terms above are well defined since V is bounded and H0 + V is bounded below, so that (H0 + V )�(H0 + V ) is 
trace class. We start with the term T1.

The term T1. Let N(V ) ∈ N such that μp ≤ 0 for p ≤ N(V ), and μp > 0 for p > N(V ). Note that N(V ) is finite 
since H0 + V is bounded below. Using the fact that ∀ε ∈ (0, 1), there exists Cε > 0 such that, ∀x ≥ 0, x2e−x ≤
Cε(e

−x)1−ε , we obtain that

T1 =
∑
p∈N

μ2
pe−μp ≤ μ2

0

∑
p≤N(V )

e−μp +
∑

p>N(V )

μ2
pe−μp

≤ μ2
0 Tr

(
�
) + CεTr

(
�1−ε

)
. (61)

In the first term, we control |μ0| using the minimax principle:

0 ≥ μ0 = min
φ∈H 1

per ,‖φ‖
L2 =1

(
‖∇φ‖2

L2 + (V , |φ|2)
)

≥ −‖V ‖L2 max
φ∈H 1

per ,‖φ‖
L2 =1

‖φ‖2
L4 ≥ −C‖V ‖L2,

which gives

|μ0| ≤ C‖V ‖L2 . (62)

For the second term in (61), we denote by (ρp)p∈N (with ρp = e−μp ) the eigenvalues of �, and by (λp)p∈N those of 
H0 + I (with of course λp = γp + 1). Following Lemma 4.5 with H = H0 + I, we find
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Tr
(
�1−ε

) =
∑
p∈N

ρ1−ε
p ≤

⎛
⎝∑

p∈N
ρpλp

⎞
⎠

1−ε ⎛
⎝∑

p∈N
λ

−(1−ε)/ε
p

⎞
⎠

ε

≤ C
(

Tr
(
(H0 + I)1/2�(H0 + I)1/2))1−ε

, (63)

since λp = (2πp)2 + 1 and whenever ε < 2/3, we have∑
p∈N

λ
−(1−ε)/ε
p < ∞.

Remarking that

∀u ∈ E+, Tr
(√

H0u
√

H0
) + Tr

(
u
) = Tr

(
(H0 + I)1/2u(H0 + I)1/2), (64)

we find, together with (61), (62), and (63), that T1 can be estimated as follows, for all ε ∈ (0, 2/3),

T1 ≤ C‖V ‖2
L2 Tr

(
�
) + C

(
Tr

(√
H0�

√
H0

) + Tr
(
�
))1−ε

≤ C + C
(
1 + ‖V ‖2

L2

)
Tr

(
�
) + Tr

(√
H0�

√
H0

)
, (65)

where we used the Young inequality.

The term T4. We turn now to T4, that verifies

T4 = (n[�],V 2),

and it suffices to bound now n[�] in L∞. This is done by duality: for any ϕ ∈ L∞(�), ϕ nonnegative,

(n[�], ϕ) = Tr
(
�ϕ

) = Tr
(
(H0 + I)1/2�(H0 + I)1/2(H0 + I)−1/2ϕ(H0 + I)−1/2)

≤ Tr
(
(H0 + I)1/2�(H0 + I)1/2)‖(H0 + I)−1/2ϕ(H0 + I)−1/2‖L(L2)

≤ CTr
(
(H0 + I)1/2�(H0 + I)1/2)‖ϕ‖L1

since (H0 + I)−1/2 is bounded from L1(�) to L∞(�). Accounting for (64), we obtain the estimate

T4 ≤ C‖V ‖2
L2

(
Tr

(√
H0�

√
H0

) + Tr
(
�
))

. (66)

The term T2. We consider now the term T2, that we first control by, proceeding in the same way as for the term T1,

|T2| = |(n[(H0 + V )�],V )| ≤ |μ0|(n[�], |V |) + Cε(n[�1−ε], |V |).
Using (62) and the L∞ estimate for n[�], we find for the first term

|μ0|(n[�], |V |) ≤ C‖V ‖2
L2

(
Tr

(√
H0�

√
H0

) + Tr
(
�
))

. (67)

For the second term, let γ ∈ (0, 1/2), and write

Tr
(
�1−ε|V |) = Tr

(
(H0 + I)γ (1−ε)�1−ε(H0 + I)γ (1−ε)(H0 + I)−γ (1−ε)|V |(H0 + I)−γ (1−ε)

)
≤ Tr

(
(H0 + I)γ (1−ε)�1−ε(H0 + I)γ (1−ε)

)
× ‖(H0 + I)−γ (1−ε)|V |(H0 + I)−γ (1−ε)‖L(L2).

We estimate the first term in the r.h.s. with the Araki–Lieb–Thirring inequality:

Tr
(
(H0 + I)γ (1−ε)�1−ε(H0 + I)γ (1−ε)

) ≤ Tr
((

(H0 + I)γ �(H0 + I)γ
)1−ε

)
.

The last term is controlled by using Lemma 4.5: Denoting by (νp)p∈N the eigenvalues of (H0 + I)γ �(H0 + I)γ , we 
have
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∑
p∈N

ν1−ε
p ≤

⎛
⎝∑

p∈N
νpλ

1−2γ
p

⎞
⎠

1−ε ⎛
⎝∑

p∈N
(λ

1−2γ
p )−(1−ε)/ε

⎞
⎠

ε

≤ C
(

Tr
(
(H0 + I)1/2�(H0 + I)1/2))1−ε

⎛
⎝∑

p∈N
(λ

1−2γ
p )−(1−ε)/ε

⎞
⎠

ε

,

where we used Lemma 4.5 with � ≡ (H0 + I)γ �(H0 + I)γ and H ≡ (H0 + I)1−2γ in the last line. The sum above is 
finite whenever ε < 2(1 − 2γ )/(3 − 4γ ) since λp = (2πp)2 + 1. Besides, we have the inequality

‖(H0 + I)−γ (1−ε)|V |(H0 + I)−γ (1−ε)‖L(L2) ≤ C‖V ‖L2, γ (1 − ε) > 1/4,

since Hs(�) ⊂ L∞(�) when s > 1/2. Setting for instance γ = 3/8, and ε ∈ (0, 1/3), and using the Young inequality 
and (64), this allows us to control �1−ε|V | by

Tr
(
�1−ε|V |) ≤ C + CTr

(√
H0�

√
H0

) + CTr
(
�
) + C‖V ‖2

L2 .

Together with (67), we finally find for T2,

|T2| ≤ C + C‖V ‖2
L2 + CTr

(√
H0�

√
H0

) + CTr
(
�
)
. (68)

The term T3 is estimated in the same fashion as T2. Collecting (65), (66) and (68) finally yields the desired result. This 
ends the proof of the lemma.
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