Self-similar gelling solutions for the coagulation equation with diagonal kernel
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 705-744.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider Smoluchowski's coagulation equation in the case of the diagonal kernel with homogeneity γ>1. In this case the phenomenon of gelation occurs and solutions lose mass at some finite time. The problem of the existence of self-similar solutions involves a free parameter b, and one expects that a physically relevant solution (i.e. nonnegative and with sufficiently fast decay at infinity) exists for a single value of b, depending on the homogeneity γ. We prove this picture rigorously for large values of γ. In the general case, we discuss in detail the behavior of solutions to the self-similar equation as the parameter b changes.

DOI : 10.1016/j.anihpc.2018.09.001
Mots-clés : Smoluchowski's coagulation equation, Self-similar solutions, Gelation
@article{AIHPC_2019__36_3_705_0,
     author = {Bonacini, Marco and Niethammer, Barbara and Vel\'azquez, Juan J.L.},
     title = {Self-similar gelling solutions for the coagulation equation with diagonal kernel},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {705--744},
     publisher = {Elsevier},
     volume = {36},
     number = {3},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.09.001},
     zbl = {1412.82032},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.09.001/}
}
TY  - JOUR
AU  - Bonacini, Marco
AU  - Niethammer, Barbara
AU  - Velázquez, Juan J.L.
TI  - Self-similar gelling solutions for the coagulation equation with diagonal kernel
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 705
EP  - 744
VL  - 36
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.09.001/
DO  - 10.1016/j.anihpc.2018.09.001
LA  - en
ID  - AIHPC_2019__36_3_705_0
ER  - 
%0 Journal Article
%A Bonacini, Marco
%A Niethammer, Barbara
%A Velázquez, Juan J.L.
%T Self-similar gelling solutions for the coagulation equation with diagonal kernel
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 705-744
%V 36
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.09.001/
%R 10.1016/j.anihpc.2018.09.001
%G en
%F AIHPC_2019__36_3_705_0
Bonacini, Marco; Niethammer, Barbara; Velázquez, Juan J.L. Self-similar gelling solutions for the coagulation equation with diagonal kernel. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 705-744. doi : 10.1016/j.anihpc.2018.09.001. http://www.numdam.org/articles/10.1016/j.anihpc.2018.09.001/

[1] Bender, C.M.; Orszag, S.A. Advanced Mathematical Methods for Scientists and Engineers. I, Springer-Verlag, New York, 1999 | DOI | Zbl

[2] Bonacini, M.; Niethammer, B.; Velázquez, J.J.L. Self-similar solutions to coagulation equations with time-dependent tails: the case of homogeneity one, 2016 (preprint) | arXiv

[3] Bonacini, M.; Niethammer, B.; Velázquez, J.J.L. Self-similar solutions to coagulation equations with time-dependent tails: the case of homogeneity smaller than one, Commun. Partial Differ. Equ., Volume 43 (2018) no. 1, pp. 82–117 | DOI

[4] Breschi, G.; Fontelos, M.A. Self-similar solutions of the second kind representing gelation in finite time for the Smoluchowski equation, Nonlinearity, Volume 27 (2014) no. 7, pp. 1709–1745 | DOI | Zbl

[5] Driver, R.D. Ordinary and Delay Differential Equations, Springer-Verlag, New York–Heidelberg, 1977 | Zbl

[6] Escobedo, M.; Mischler, S.; Perthame, B. Gelation in coagulation and fragmentation models, Commun. Math. Phys., Volume 231 (2002) no. 1, pp. 157–188 | DOI | Zbl

[7] Jeon, Intae Existence of gelling solutions for coagulation–fragmentation equations, Commun. Math. Phys., Volume 194 (1998) no. 3, pp. 541–567 | Zbl

[8] Leyvraz, F. Scaling theory and exactly solved models in the kinetics of irreversible aggregation, Phys. Rep., Volume 383 (2003) no. 2–3, pp. 95–212

[9] Leyvraz, F. Rigorous results in the scaling theory of irreversible aggregation kinetics, J. Nonlinear Math. Phys., Volume 12 (2005) no. Suppl. 1, pp. 449–465 | Zbl

[10] Leyvraz, F.; Tschudi, H.R. Singularities in the kinetics of coagulation processes, J. Phys. A, Volume 14 (1981) no. 12, pp. 3389–3405 | DOI | Zbl

[11] McLeod, J.B. On an infinite set of non-linear differential equations, Q. J. Math. Oxf. Ser. (2), Volume 13 (1962), pp. 119–128 | MR | Zbl

[12] Menon, G.; Pego, R.L. Approach to self-similarity in Smoluchowski's coagulation equations, Commun. Pure Appl. Math., Volume 57 (2004) no. 9, pp. 1197–1232 | DOI | Zbl

[13] Smoluchowski, M. Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Phys. Z., Volume 17 (1916), pp. 557–599

[14] Ziff, R.M. Kinetics of polymerization, J. Stat. Phys., Volume 23 (1980) no. 2, pp. 241–263

Cité par Sources :