We consider Smoluchowski's coagulation equation in the case of the diagonal kernel with homogeneity
@article{AIHPC_2019__36_3_705_0, author = {Bonacini, Marco and Niethammer, Barbara and Vel\'azquez, Juan J.L.}, title = {Self-similar gelling solutions for the coagulation equation with diagonal kernel}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {705--744}, publisher = {Elsevier}, volume = {36}, number = {3}, year = {2019}, doi = {10.1016/j.anihpc.2018.09.001}, zbl = {1412.82032}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2018.09.001/} }
TY - JOUR AU - Bonacini, Marco AU - Niethammer, Barbara AU - Velázquez, Juan J.L. TI - Self-similar gelling solutions for the coagulation equation with diagonal kernel JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 705 EP - 744 VL - 36 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2018.09.001/ DO - 10.1016/j.anihpc.2018.09.001 LA - en ID - AIHPC_2019__36_3_705_0 ER -
%0 Journal Article %A Bonacini, Marco %A Niethammer, Barbara %A Velázquez, Juan J.L. %T Self-similar gelling solutions for the coagulation equation with diagonal kernel %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 705-744 %V 36 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2018.09.001/ %R 10.1016/j.anihpc.2018.09.001 %G en %F AIHPC_2019__36_3_705_0
Bonacini, Marco; Niethammer, Barbara; Velázquez, Juan J.L. Self-similar gelling solutions for the coagulation equation with diagonal kernel. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 705-744. doi : 10.1016/j.anihpc.2018.09.001. https://www.numdam.org/articles/10.1016/j.anihpc.2018.09.001/
[1] Advanced Mathematical Methods for Scientists and Engineers. I, Springer-Verlag, New York, 1999 | DOI | Zbl
[2] Self-similar solutions to coagulation equations with time-dependent tails: the case of homogeneity one, 2016 (preprint) | arXiv
[3] Self-similar solutions to coagulation equations with time-dependent tails: the case of homogeneity smaller than one, Commun. Partial Differ. Equ., Volume 43 (2018) no. 1, pp. 82–117 | DOI
[4] Self-similar solutions of the second kind representing gelation in finite time for the Smoluchowski equation, Nonlinearity, Volume 27 (2014) no. 7, pp. 1709–1745 | DOI | Zbl
[5] Ordinary and Delay Differential Equations, Springer-Verlag, New York–Heidelberg, 1977 | Zbl
[6] Gelation in coagulation and fragmentation models, Commun. Math. Phys., Volume 231 (2002) no. 1, pp. 157–188 | DOI | Zbl
[7] Existence of gelling solutions for coagulation–fragmentation equations, Commun. Math. Phys., Volume 194 (1998) no. 3, pp. 541–567 | Zbl
[8] Scaling theory and exactly solved models in the kinetics of irreversible aggregation, Phys. Rep., Volume 383 (2003) no. 2–3, pp. 95–212
[9] Rigorous results in the scaling theory of irreversible aggregation kinetics, J. Nonlinear Math. Phys., Volume 12 (2005) no. Suppl. 1, pp. 449–465 | Zbl
[10] Singularities in the kinetics of coagulation processes, J. Phys. A, Volume 14 (1981) no. 12, pp. 3389–3405 | DOI | Zbl
[11] On an infinite set of non-linear differential equations, Q. J. Math. Oxf. Ser. (2), Volume 13 (1962), pp. 119–128 | MR | Zbl
[12] Approach to self-similarity in Smoluchowski's coagulation equations, Commun. Pure Appl. Math., Volume 57 (2004) no. 9, pp. 1197–1232 | DOI | Zbl
[13] Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Phys. Z., Volume 17 (1916), pp. 557–599
[14] Kinetics of polymerization, J. Stat. Phys., Volume 23 (1980) no. 2, pp. 241–263
Cité par Sources :