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Abstract

We consider Smoluchowski’s coagulation equation in the case of the diagonal kernel with homogeneity γ > 1. In this case the 
phenomenon of gelation occurs and solutions lose mass at some finite time. The problem of the existence of self-similar solutions 
involves a free parameter b, and one expects that a physically relevant solution (i.e. nonnegative and with sufficiently fast decay at 
infinity) exists for a single value of b, depending on the homogeneity γ . We prove this picture rigorously for large values of γ . In 
the general case, we discuss in detail the behavior of solutions to the self-similar equation as the parameter b changes.
© 2018 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider Smoluchowski’s coagulation equation [13]

∂tf (ξ, t) = 1

2

ξ∫
0

K(ξ − η,η)f (ξ − η, t)f (η, t)dη −
∞∫

0

K(ξ,η)f (ξ, t)f (η, t)dη, (1.1)

which describes binary clustering of particles of size ξ and η with a rate prescribed by the rate kernel K(ξ, η). For-
mally, equation (1.1) preserves the total mass in the system, that is 

∫ ∞
0 ξf (ξ, t) dξ ≡ const. However, it is well-known 

that if the kernel K is for example homogeneous and the degree of homogeneity is larger than one, the phenomenon 
of gelation occurs, that is the loss of mass at finite time. For models of polymers gelation has already been predicted 
in the classical Flory–Stockmayer theory (see e.g. [14]) via statistical methods. For the discrete analogue of the rate 
equation (1.1) the first explicit example of a gelling solution has been given by McLeod [11] for the product kernel 
K(ξ, η) = ξη, while a solution after the gelation time has been provided in [10]. Rigorous proofs of the occurrence of 
gelation for a large range of kernels with homogeneity larger than one can be found in [7,6]. It is in principle conjec-
tured that when the time approaches the gelation time the solution converges to a self-similar form [8]. However, not 
much is presently known about the details of the gelation process apart from the case of the solvable product kernel. 
In this case, it is established in [12] that there is a whole one-parameter family of self-similar solutions describing the 
gelation process. One of them has exponential decay, the other decay like a power law, and which of them is selected 
depends on the decay behavior of the initial data. The proof of the result relies on the solvability of the product kernel, 
that is on the fact that the equation is in this case explicitly solvable using the Laplace transform. For kernels different 
from the product kernel, however, very little is known about self-similar gelling solutions. In [4] perturbations of the 
product kernel are considered and the existence of self-similar solutions is established. Positivity of these solutions is 
however not rigorously shown, but a convincing formal argument of this property is given.

Our goal in this paper is to study the question of existence of self-similar gelling solutions for another special 
kernel, the so called diagonal kernel K(ξ, η) = ξ1+γ δ(ξ − η) with homogeneity γ > 1 (here δ denotes the Dirac delta 
at the origin, which is homogeneous of degree −1). Using the identity δ(ξ − 2η) = 1

2δ(η − ξ
2 ), the Smoluchowski 

equation (1.1) in this case takes the form

∂tf (ξ, t) = 1

4

(ξ

2

)γ+1(
f (ξ/2, t)

)2 − ξγ+1(f (ξ, t)
)2

. (1.2)

1.1. Self-similar solutions

Self-similar solutions to (1.2) for homogeneities γ > 1 have the form

f (ξ, t) = (T − t)abF ((T − t)bξ), x = (T − t)bξ (1.3)

depending on two real parameters a, b, where T is the blow-up time. By plugging this ansatz into the equation one 
finds that the parameters a, b are related by the condition

b = 1

1 + γ − a
, (1.4)

and the equation for the self-similar profile F is

−abF(x) − bxF ′(x) = 1

4

(x

2

)γ+1(
F(x/2)

)2 − xγ+1(F(x)
)2

. (1.5)

Notice that, in order to have that the mean cluster size s(t) = (T − t)−b tends to infinity as t approaches the gelation 
time, we impose the constraint b > 0 (or equivalently a < 1 + γ ).
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The problem has a free parameter a (or b), which gives the power-law behavior of the self-similar profile at the 
origin. Indeed, if we require that at the gelpoint t = T the self-similar solution f (x, T ) is finite and nonvanishing, 
then this can only happen if

F(x) ∼ c0x
−a as x → 0+ (1.6)

(in the sense limx→0+ xaF (x) = c0 ∈ (0, ∞)). The multiplicative constant c0 can be normalized by rescaling the 
solution, so that we consider without loss of generality c0 = 1. At the gelation time the self-similar solution f has the 
power-law behavior

f (ξ,T −) ∼ lim
t→T −(T − t)ab

(
(T − t)bξ

)−a = ξ−a . (1.7)

1.2. The shooting problem

For the analysis of (1.5) it is convenient to rescale the self-similar profile F : setting

�(x) = xγ+1F(x) , (1.8)

we obtain from (1.5) and (1.6) that � solves{
bx�′(x) = �(x) − 2γ−1

(
�(x/2)

)2 + (
�(x)

)2
,

�(x) ∼ x
1
b as x → 0+ (1.9)

(recall also (1.4)). It is conjectured in [9] that, for a given γ > 1, there is a unique value of the free parameter b such 
that (1.9) has a physically relevant solution. By physically relevant we mean that the profile F(x) is nonnegative and 
decays exponentially as x → ∞; in this case a function with the self-similar form (1.3) describes a solution of (1.2)
which decays exponentially for ξ >> (T − t)−b and behaves as a power law for ξ << (T − t)−b . This is the analogue
of the gelling transition which takes place for the product kernel, see [11].

While there is sound numerical work supporting this expectation, a rigorous proof of such statement seems far 
from being easily achievable. Leyvraz [9] suggested that a shooting argument could lead to the desired result. Indeed, 
(1.9) has the explicit power-law solution

�0(x) = x
1
b0 for b0 = 2

γ − 1
(1.10)

(notice that, according to (1.3) and (1.4), this solution corresponds to the stationary self-similar solution f (x, t) =
x−a0 , a0 = γ+3

2 , to Smoluchowski’s equation (1.2)). It has been observed numerically, and we present below a rigorous 
proof of this fact (see Proposition 2.2), that the solutions corresponding to values of b > b0 sufficiently close to b0
cross to negative values, and therefore are not physically relevant. Moreover, the constant function

�∞(x) ≡ 1

2γ−1 − 1
(1.11)

is also a solution to the first equation in (1.9), for every value of b; solutions to (1.9) for large values of b approach this 
constant value as x → ∞ (Proposition 3.4). We will not further investigate in this paper the features of these solutions 
for which �(x) approaches a constant as x → ∞; we only observe that they correspond to solutions of (1.2) in the 
self-similar form (1.3) with the asymptotic behavior

f (ξ, t) ∼ �∞
(T − t)ξγ+1 as ξ → ∞. (1.12)

It is worth to remark that these solutions have time-dependent fat tails, and in this respect they have analogies with 
those constructed in [2,3] for kernels with homogeneity γ ≤ 1. It would be interesting to clarify if there are solutions 
of the full evolution problem (1.2) (not necessarily of self-similar form) with the asymptotics f (ξ, t) ∼ a(t)ξ−(γ+1)

as ξ → ∞, and having also finite mass 
∫ ∞

0 ξf (ξ, t) dξ < ∞ for 0 ≤ t < T . Notice that this finite mass condition is 
not satisfied by the self-similar solutions obtained in this paper and having the asymptotics (1.12), because they have 
a non-integrable singularity at ξ = 0.
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At the border between these two different behaviors it is expected that a unique value of the shooting parameter 
b̄ ∈ (b0, ∞) exists so that the corresponding solution has exponential decay and remains positive.

However, a deeper investigation shows that the structure of the equation is more complex. Indeed the stability 
analysis of the constant solution �∞ (see Section 3.1) reveals that there is a critical value b∗ of the parameter b such 
that �∞ is stable only for b > b∗, and unstable otherwise. Solutions to (1.9) for b < b∗ develop oscillations, which 
have already been numerically observed. We will investigate the features of these oscillating solutions in Section 3. 
We did not explore systematically the region b < b∗. It looks feasible to prove the existence of periodic solutions for b
in a neighborhood of b∗ by a Hopf bifurcation argument. For smaller values of b, it might be a priori possible to have 
secondary Hopf bifurcations and very complicated oscillatory dynamics. It would be worth to get a deeper insight 
about this question by means of numerical simulations.

The value of b∗ can be determined explicitly and one finds b0 < b∗ for every γ . We expect therefore that the critical 
parameter b̄ is to be found in the interval (b0, b∗), and that it separates two unphysical behaviors of the solutions: 
on the one hand, for b < b̄, solutions which become negative; on the other, for b > b̄, oscillating solutions with 
lim infx→∞ �(x) > 0. A standard shooting argument seems however to be difficult to perform due to the instability 
of this second behavior.

In the limit regime γ → ∞ we can actually provide a rigorous proof of the previous picture. Indeed, by rescaling 
the solution as

φ(x) := σx− 1
b �

( x

σb

)
, with σ = 2γ−1− 2

b ,

one finds that the equation solved by φ is{
bxφ′(x) = −x

1
b

(
φ(x/2)

)2 + σ−1x
1
b

(
φ(x)

)2
,

φ(0) = 1.

In the limit γ → ∞ one has σ → ∞ and the second term on the right-hand side is negligible; therefore we can 
consider the approximation of the equation

bxφ′(x) = −x
1
b
(
φ(x/2)

)2
.

It is immediately checked that the exponential φ(x) = e−x is an explicit solution for the critical value b = 1. By 
linearizing around this solution, it is possible to prove rigorously via the Implicit Function Theorem that for every 
sufficiently large γ there is a unique value b̄ in a neighborhood of b = 1 such that the corresponding solution to (1.9)
is positive and has exponential decay at infinity. The proof will be given in Section 5.

We summarize the above discussion and the results of the paper with a cartoon of the phase diagram of the behavior
of solutions to (1.9) depending on the values of the homogeneity γ > 1 and of the free parameter b, see Fig. 1. On 
the line corresponding to the value b0 = 2

γ−1 the equation has the explicit solution �0, see (1.10). According to the 
previous discussion, we are interested only in values of b > b0, that is in the region below the line in the picture. 
A second value b1 = b1(γ ) of the parameter is found so that for b ∈ (b0, b1) the solution becomes negative, see 
Section 2. A third line b = b∗(γ ) delimits the region where the constant solution �∞, see (1.11), is stable; this is 
discussed in Section 3. The three lines are ordered, as for every value of γ one has b0 < b1 < b∗. The asymptotic 
analysis in Section 4 provides qualitative information about the solutions for values of γ and 1

b
in a neighborhood 

of the point (1, 0). Finally, in the regime γ → ∞ we have a rigorous proof of the existence of a critical parameter 
b̄ = b̄(γ ), with b̄(γ ) → 1 as γ → ∞, for which the solution is positive and exponentially decaying.

2. Well-posedness and change of sign

It will be often convenient to work in another set of variables: we set

�(x) = yH(y), y = x
1
b , (2.1)

with the profile H solving{
H ′(y) = −σ

(
H(2− 1

b y)
)2 + (

H(y)
)2

, σ = 2γ−1− 2
b ,

H(0) = 1.
(2.2)
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Fig. 1. Cartoon of the behavior of solutions to (1.9) depending on the values of γ and b.

One of the advantages of working with these variables is that the solution H turns out to be monotone and analytic in 
a neighborhood of the origin, see Lemma 2.1. Notice that the two solutions �0 and �∞, defined in (1.10) and (1.11)
respectively, are transformed into

H0(y) ≡ 1 and H∞(y) = 1

(2γ−1 − 1)y
.

The two generic, unphysical behaviors which are expected for solutions to (1.9), namely � changing sign and 
lim infx→∞ �(x) > 0, correspond in these variables to H changing sign and to a power-law decay H(y) ∼ 1

y
as 

y → ∞.
As a preliminary step in the analysis we show the well-posedness of the equation. This is also observed in [9], and 

we reproduce here the argument for the reader’s convenience.

Lemma 2.1 (Well-posedness and monotonicity). The equation (2.2) has a unique analytic local solution in a neigh-
borhood of y = 0. Moreover, assuming that b > b0 = 2

γ−1 , the solution remains well-defined and monotonically 
decreasing as long as H(y) > 0, and satisfies the bound

H(y) ≤ 1

1 + (σ − 1)y
. (2.3)

Proof. In order to prove local existence in a neighborhood of the origin, one writes H as a power series around y = 0, 
H(y) = ∑∞

n=0 any
n, with a0 = 1, and easily determines a recursive formula for the an’s:

an+1 = 1

n + 1

(
1 − σ

2
n
b

) n∑
k=0

akan−k , n = 0,1, . . .

As the series converges in a finite interval (to see this, one can for instance prove by induction that |an| ≤ cn, where 
c = supn |1 − σ2−n/b|), we obtain an analytic solution to (2.2) in an interval [0, y0] for some y0 > 0.

We now observe that the solution H is monotonically decreasing as long as it exists and remains positive. Indeed, 
we have H ′(0) = −(σ − 1) < 0, and therefore H is initially decreasing. Moreover, if ȳ is the first point at which 
H ′(ȳ) = 0 and H is positive at ȳ, then H is monotonically decreasing for y < ȳ and by using the equation

0 = H ′(ȳ) ≤ −(σ − 1)
(
H(2− 1

b ȳ)
)2

< 0 ,

which is a contradiction.
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Once we have local existence in an interval [0, y0] near the origin, the equation (2.2) can be regarded as an ordinary 
differential equation and a recursive application of standard existence and uniqueness results give that the solution can 
be uniquely continued, unless it becomes negative. Indeed the monotonicity implies that the solution remains bounded 
as long as it stays positive.

Finally, to prove the bound in the statement it is sufficient to observe that by monotonicity we have

H ′(y) = −(σ − 1)
(
H(2− 1

b y)
)2 + (

H(y)
)2 − (

H(2− 1
b y)

)2

≤ −(σ − 1)
(
H(2− 1

b y)
)2 ≤ −(σ − 1)

(
H(y)

)2
,

that is, ( 1
H(y)

)′ ≥ (σ − 1). Therefore (2.3) follows by integration. �
We show in the following proposition that for values of b larger but close to b0 = 2

γ−1 the solution crosses to 
negative values and is therefore not a physical solution.

Proposition 2.2 (Change of sign for b ∼ b0). There exists b1 > b0, depending on γ , such that for every b ∈ (b0, b1)

the solution H to (2.2) becomes negative.

Proof. Since b → b+
0 corresponds to σ → 1+, it is convenient to introduce a small parameter ε > 0 by setting 

σ − 1 = 2ε (so that also b depends on ε). The lemma will be proved by showing that H has to change sign, provided 
ε is small enough. We linearize around H(0) = 1: we set H(y) = 1 + M(y), with M(0) = 0 and

M ′(y) = −2ε + 2M(y) − 2σM(2− 1
b y) − σ

(
M(2− 1

b y)
)2 + (

M(y)
)2

. (2.4)

We now divide the proof into four steps.

Step 1. We first consider the linearized equation

L′(y) = 1 + 2L(y) − 2L(2− 1
b y) , L(0) = 0 . (2.5)

By writing L in power series, L(y) = ∑∞
n=1 any

n, it is straightforward to determine a recursive relation for the 
coefficients an which yields the following expression for the solution L, defined for all y,

L(y) =
∞∑

n=1

(2n−1

n!
)
cn(b)yn , c1(b) = 1, cn(b) :=

n−1∏
k=1

(1 − 2− k
b ) .

Notice that (cn(b))n is a decreasing sequence with

cn(b) → c∗(b) :=
∞∏

k=1

(1 − 2− k
b ) ∈ (0,1) as n → ∞.

Therefore the solution to the linearized equation (2.5) satisfies the bounds

c∗(b)

2
(e2y − 1) ≤ L(y) ≤ 1

2
(e2y − 1) . (2.6)

Step 2. We now go back to the solution M to (2.4) and we write

M(y) = −2εL(y) + S(y) , S(0) = 0 , (2.7)

where S(y) solves

S′(y) = 2S(y) − 2S(2− 1
b y) − 4εM(2− 1

b y) − σ
(
M(2− 1

b y)
)2 + (

M(y)
)2

=: 2S(y) − 2S(2− 1
b y) + R(y) .

This equation satisfies a maximum principle: indeed, suppose that S̄ solves

S̄′(y) = 2S̄(y) − 2S̄(2− 1
b y) + R̄(y) , S̄(0) = 0 , (2.8)
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with a positive source R̄ > 0. Then S̄ is positive and increasing: indeed, at y = 0 one has S′(0) = 0 and S′′(0) > 0, 
therefore S̄(y) > S̄(2− 1

b y) for y sufficiently small; by plugging this inequality into the equation (2.8) one finds that 
the derivative remains positive for larger y. Hence S̄ is increasing and S̄ > 0. Moreover

S̄′(y) ≤ 2S̄(y) + R̄(y) ,

which yields, as S̄(0) = 0,

S̄(y) ≤
y∫

0

e2(y−z)R̄(z)dz . (2.9)

Step 3. We now claim that we can find uniform constants δ > 0 and K > 1 such that

|M(y)| ≤ εKe2y for every y ∈ (0, y∗), (2.10)

where y∗ > 0 is the point such that εe2y∗ = δ.
We prove the previous estimate by a continuation argument. Suppose that (2.10) is valid for every y ∈ (0, ȳ), for 

some ȳ < y∗. Then for every y ≤ ȳ

|R(y)| ≤ 4ε|M(2− 1
b y)| + σ

(
M(2− 1

b y)
)2 + (

M(y)
)2

≤ 4ε2Ke21−1/by + σε2K2e22−1/by + ε2K2e4y ≤ 10ε2K2e4y .

(2.11)

Define now R̄(y) := 10ε2K2e4y , and let S̄ be the solution to (2.8). Notice that, as R̄ > 0, we have by (2.9)

S̄(y) ≤
y∫

0

e2(y−z)R̄(z)dz = 10ε2K2e2y

y∫
0

e2z dz ≤ 5ε2K2e4y .

Since |R(y)| ≤ R̄(y) for every y ∈ (0, ȳ) by (2.11), the discussion in the second step implies that for every y ≤ ȳ

|S(y)| ≤ S̄(y) ≤ 5ε2K2e4y . (2.12)

By inserting this inequality (computed at ȳ) in (2.7), and recalling also (2.6), we finally obtain

|M(ȳ)| ≤ 2εL(ȳ) + |S(ȳ)| ≤ ε(e2ȳ − 1) + 5ε2K2e4ȳ ≤ (
1 + 5δK2)εe2ȳ ,

where we used the fact that ȳ ≤ y∗ and the definition of y∗ in the last inequality. It is clear that we can choose any 
constant K > 2 and a sufficiently small δ > 0 (depending on only K) such that

|M(ȳ)| ≤ εK

2
e2ȳ . (2.13)

For this choice of K and δ we have therefore proved that, assuming that (2.10) is valid for every y ∈ (0, ȳ), for some 
ȳ < y∗, then (2.13) holds at ȳ. Since (2.10) is obviously true for y small enough, as M(0) = 0, a continuation argument 
yields that (2.10) actually holds in the full interval (0, y∗), as claimed.

Step 4. We are now in position to conclude the proof of the lemma. We have by (2.7), (2.6), (2.12), and by definition 
of the point y∗,

H(y∗) = 1 + M(y∗) = 1 − 2εL(y∗) + S(y∗)
≤ 1 − εc∗(b)(e2y∗ − 1) + 5ε2K2e4y∗

= 1 − δc∗(b) + εc∗(b) + 5δ2K2 .

Observing that the constant c∗(b) is uniformly bounded away from 0 for b in a neighborhood of b0, by possibly 
choosing a smaller δ > 0 we obtain from this inequality that for every ε > 0 sufficiently small one has

H(y∗) ≤ 1 − δ∗ (2.14)
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for some fixed δ∗ ∈ (0, 1). In turn, by the monotonicity proved in Lemma 2.1 we also have that H(y) ≤ 1 − δ∗ for 
y > y∗, as long as H remains positive.

Consider now any point y ∈ (y∗, y∗ + 2
δ∗ ). For every such y we have

y

2
1
b

≤ y∗
2

1
b

+ 2

2
1
b δ∗

= ln(δ/ε)

21+ 1
b

+ 2

2
1
b δ∗

<
1

2
ln(δ/ε)

provided ε is small enough. Hence 2− 1
b y < y∗, so that we can use the estimate (2.12) at the point 2− 1

b y. This estimate, 
together with (2.7), (2.6) and the definition of the point y∗, yields∣∣H(2− 1

b y) − 1
∣∣ = |M(2− 1

b y)| ≤ 2εL(2− 1
b y) + |S(2− 1

b y)|
≤ ε(e21−1/by − 1) + 5ε2K2e22−1/by

≤ εe21−1/by∗ exp
(22−1/b

δ∗

)
+ 5ε2K2e22−1/by∗ exp

(23−1/b

δ∗

)
= ε1−2−1/b

δ2−1/b

exp
(22−1/b

δ∗

)
+ 5K2ε2(1−2−1/b)δ21−1/b

exp
(23−1/b

δ∗

)
for every y ∈ (y∗, y∗ + 2

δ∗ ). Therefore

∣∣H(2− 1
b y) − 1

∣∣ ≤ ωδ,δ∗(ε) for every y ∈
(
y∗, y∗ + 2

δ∗

)
(2.15)

for some function ωδ,δ∗(ε) → 0 as ε → 0+.
By combining (2.14) and (2.15) we have from (2.2)

H ′(y) = −(1 + 2ε)
(
H(2− 1

b y)
)2 + (

H(y)
)2

≤ −(1 + 2ε)(1 − ωδ,δ∗(ε))
2 + (1 − δ∗)2

≤ −δ∗ + ω̃(ε) ,

with ω̃(ε) → 0 as ε → 0+, for every y ∈ (y∗, y∗ + 2
δ∗ ), provided that H remains positive in that interval. By choosing 

ε small enough, we then have dH
dy

(y) ≤ − 1
2δ∗ in the interval (y∗, y∗ + 2

δ∗ ), and this together with (2.14) implies that 
H has to become negative in this interval. �
3. Stability and oscillating solutions

We discuss in this section the stability of the constant solution �∞ ≡ 1
2γ−1−1

to the first equation in (1.9) (corre-

sponding to H∞(y) = �∞
y

in the variables (2.1)). For this purpose it is convenient to introduce a third set of variables, 
by setting

ϕ(z) = yH(y) = �(x), ez = y = x
1
b , z = lny = 1

b
lnx, (3.1)

with the profile ϕ :R → R solving the nonlinear delay equation{
ϕ′(z) = ϕ(z) − 2γ−1

(
ϕ(z − d)

)2 + (
ϕ(z)

)2
, d = ln 2

b
,

ϕ(z) ∼ ez as z → −∞ .
(3.2)

We will first show in Proposition 3.1 that the constant �∞ is asymptotically stable, provided that the free parameter 
b is larger than a critical value b∗, which is explicitly determined in terms of the homogeneity γ . A consequence of 
this result is that, for large values of b, the solution ϕ to (3.2) converges to the constant value �∞ as z → ∞, see 
Proposition 3.4. Finally, in Section 3.3 we discuss oscillating solutions which appear numerically for intermediate 
values of b and are related to the instability of �∞. In particular we present an iteration argument describing in details 
the structure of such solutions in the limit case γ = ∞.
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3.1. Stability analysis

We first study the asymptotic stability of the constant solution �∞.

Proposition 3.1 (Stability of the constant solution). Assume that b > b∗, where b∗ = b∗(γ ) is the critical value

b∗ = 2γ ln 2
√

1 − ( 1
2 + 1

2γ

)2

(2γ−1 − 1) arccos
( 1

2 + 1
2γ

) . (3.3)

Then the constant solution �∞ = 1
2γ−1−1

is asymptotically stable, in the following sense: there exists δ > 0 such that, 

given any z0 ∈R and ϕ0 ∈ C0([z0 − d, z0]) with ‖ϕ0 − �∞‖∞ < δ, the initial value problem{
ϕ′(z) = ϕ(z) − 2γ−1

(
ϕ(z − d)

)2 + (
ϕ(z)

)2
for z ≥ z0,

ϕ(z) = ϕ0(z) for z ∈ [z0 − d, z0]
has a unique, global solution which converges exponentially to �∞ as z → ∞.

Proof. If we plug the ansatz ϕ(z) = �∞ + φ(z) into the first equation of (3.2) we find

φ′(z) = θ + 1

θ − 1
φ(z) − 2θ

θ − 1
φ(z − d) − θ

(
φ(z − d)

)2 + (
φ(z)

)2
, (3.4)

where we set θ = 2γ−1 to lighten the notation. In terms of φ, the goal is to show the asymptotic stability of the trivial 
solution to (3.4).

The conclusion follows by an application of standard results in the theory of delay differential equations. It is 
indeed well known that the trivial solution to the linearized equation

G′(z) = θ + 1

θ − 1
G(z) − 2θ

θ − 1
G(z − d)

is uniformly asymptotically stable if all the roots of the corresponding characteristic equation

λ + 2θ

θ − 1
e−dλ − θ + 1

θ − 1
= 0 (3.5)

have negative real part, see for instance [5, Theorem 28B] and references therein. In view of Lemma 3.2 below, this is 
the case if b > b∗. Therefore in this case we are in the position to apply [5, Theorem 34E and Corollary 34F] which 
yield the uniform asymptotic stability of the trivial solution to the nonlinear equation (3.4). �
Lemma 3.2 (Roots of the characteristic equation). All the roots λ ∈C of the characteristic equation (3.5) have nega-
tive real part if and only if b > b∗, where b∗ is defined in (3.3), and d = ln 2

b
.

Proof. By setting λ̃ := θ−1
2θ

λ, d̃ := 2θ
θ−1d , σ̃ := θ+1

2θ
, the problem is equivalent to study for which values of Ã all the 

roots λ̃ ∈C of the equation

e−d̃λ̃ + λ̃ − σ̃ = 0

have negative real part. Notice that σ̃ = 1
2 + 1

2γ ∈ ( 1
2 , 1).

Define F
d̃
(λ) := e−d̃λ + λ − σ̃ . We make use of the Argument Principle in order to study the roots of F

d̃
in the 

complex plane. We consider the closed curve � in the complex plane surrounding an half disk of radius R >> 1 in 
the half plane {Re(z) > 0} with flat part on the imaginary axis: � = �1 ∪ �2, with

�1 = {it : t ∈ [−R,R]} , �2 = {Re−it : t ∈ (−π/2,π/2)} .

Let � := F
d̃
(�) be the image of � under the map F

d̃
. We shall now count the number of turns of � around the origin: 

if such number is zero, we can conclude that there are no roots of F
d̃

in the region enclosed by � (and since R is 
arbitrary there are no roots in the whole half plane {Re(z) > 0}).
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Fig. 2. The curve �1 in the proof of Lemma 3.2, see (3.6), for different values of the parameter d̃ . For d̃ smaller than the critical parameter d∗ the 
curve does not surround the origin (left panel); for d̃ > d∗ the curve makes a loop around the origin and roots with positive real part appear (center); 
for large values of d̃ the number of turns around the origin increases, corresponding to more instability modes (right).

It is easily seen that the path F
d̃
(�2), for large values of R, is approximately a half-circle of radius R centered at 

the point −σ̃ on the real axis. The curve F
d̃
(�1) has instead the parametric expression

�1 = {(−σ̃ + cos(d̃t)) + i(t − sin(d̃t)) : t ∈ [−R,R]} . (3.6)

For d̃ ≤ 1 the imaginary part is monotone increasing in t , and this clearly implies that the curve � does not surround 
the origin. However, as d̃ increases past 1, the curve starts to make a little loop, eventually surrounding the origin for 
d̃ larger than a critical value d∗ (see Fig. 2). It is a simple exercise to check that the curve �1 does not make any turn 
around the origin if and only if

d̃ <
arccos σ̃

sin arccos σ̃
= arccos σ̃√

1 − σ̃ 2
=: d∗ .

Recalling that d̃ = 2θ
θ−1d and d = ln 2

b
it immediately follows that the previous condition is equivalent to b > b∗. �

Remark 3.3. It is important to compare b∗ with the critical value b0 = 2
γ−1 : by introducing ρ := 1 − 2−(γ−1) ∈ (0, 1), 

we have in terms of ρ

b∗
b0

= − ln(1 − ρ)

ρ

√
ρ − ρ2

4

arccos
(
1 − ρ

2

) =: p(ρ) .

As p(ρ) > 1 for all ρ ∈ (0, 1), the inequality b∗ > b0 holds for every value of γ > 1. Notice also that in the limit 
γ → 1+ the ratio b∗

b0
converges asymptotically to 1, while in the regime of large homogeneity the two values b0 and 

b∗ are separated: b0 → 0 and b∗ → 3
√

3 ln 2
π

as γ → ∞.

3.2. Convergence to the constant solution

The result in Proposition 3.1 allows us to show that the solution ϕ to (3.2) converges to the constant value �∞, for 
large values of the free parameter b (that is, for small values of the delay d).

Proposition 3.4 (Convergence to the constant solution for b → ∞). There exists b2 > b0 such that for every b > b2
the solution ϕ to (3.2) is globally defined, positive, and satisfies

ϕ(z) → �∞ as z → ∞.

Equivalently, for b > b2 the solution � to (1.9) is defined in [0, ∞), positive, and satisfies limx→∞ �(x) = �∞.

Proof. The idea of the proof is that for b large enough (or equivalently for small values of the delay d = ln 2
b

) the 
solution to (3.2) is close to the function ψ solving the limit problem
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{
ψ ′(z) = ψ(z) − (2γ−1 − 1)

(
ψ(z)

)2
,

ψ(z) ∼ ez as z → −∞,
(3.7)

which is explicitly given by

ψ(z) = ez

1 + (2γ−1 − 1)ez
.

As ψ(z) → �∞ as z → ∞, the conclusion will follow by the asymptotic stability of �∞ proved in Proposition 3.1. 
We simplify the notation by setting θ = 2γ−1. We also stress the dependence on the parameter d by writing ϕd for the 
solution to (3.2).

By the change of variables (3.1), ϕd is transformed into the solution Hd to (2.2) and ψ into the function H̄ (y) =
1

1+(θ−1)y
. In view of Lemma 2.1 the functions Hd are locally defined, positive and analytic in a neighborhood of the 

origin; by monotonicity and positivity one has the lower bound

H ′
d(y) ≥ −σ

(
Hd(2− 1

b y)
)2 ≥ −σ ≥ −θ ,

which implies that Hd remains positive in a uniform interval [0, y0], with y0 > 0 independent of d . Moreover, by 
observing that the functions Hd and their derivatives (of any order) are uniformly bounded in [0, y0], one can pass to 
the limit in the equation and obtain that Hd converges uniformly to H̄ in [0, y0] as d → 0+.

Going back to the solution ϕd to (3.2) with the change of variables (3.1), the previous discussion shows for every 
value of the parameter d the existence of a unique solution to (3.2) at least in some interval (−∞, z0], where z0 is 
uniform with respect to d , and

ϕd → ψ uniformly in (−∞, z0] as d → 0+. (3.8)

Moreover, by Lemma 2.1 ϕd can be continued as long as it remains positive, and is uniformly bounded from above 
by the constant 1

σ−1 = 1
θ2−2/b−1

; since we are looking at the regime b → ∞, we can hence assume without loss of 
generality that ϕd is bounded from above by a uniform constant K1 > 0. Therefore, if z1 is the first point at which the 
solution crosses zero (with z1 = ∞ if ϕd is everywhere positive), we have

0 < ϕd(z) ≤ K1, |ϕ′
d(z)| ≤ K1 + (θ + 1)K2

1 =: K2 for all z < z1 . (3.9)

Define now the function η(z) := ϕd(z) − ψ(z), where ψ is the solution to (3.7). By taking the Taylor expansion of 
ϕd at a point z,

ϕd(z − d) = ϕd(z) − dϕ′
d(tz) , tz ∈ (z − d, z),

and by the explicit representation of ψ we find that η solves

η′(z) = η(z) − (θ − 1)
(
ϕd(z) + ψ(z)

)
η(z) + 2θdϕd(z)ϕ′

d(tz) − θd2ϕ′
d(tz)

2

=
(

1 − (θ − 1)
(
η(z) + 2ψ(z)

))
η(z) + 2θdϕd(z)ϕ′

d(tz) − θd2ϕ′
d(tz)

2

= p(z)η(z) − (θ − 1)η(z)2 + r(z) ,

where we set

p(z) := 1 − (θ − 1)ez

1 + (θ − 1)ez
, r(z) := 2θdϕd(z)ϕ′

d(tz) − θd2ϕ′
d(tz)

2 .

Notice that the estimates (3.9) and the explicit definitions of ψ and p give

|p(z) − (θ − 1)η(z)| ≤ K, |r(z)| ≤ Kd for all z < z1,

for some uniform constant K > 0. Therefore for every z ∈ [z0, z1]

|η(z)| =
∣∣∣∣η(z0)e

∫ z
z0

(p(w)−(θ−1)η(w)) dw +
z∫

z0

e
∫ z
w(p(s)−(θ−1)η(s)) dsr(w)dw

∣∣∣∣
K(z−z0) K(z−z0)

(3.10)
≤ |η(z0)|e + dKe .
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Fig. 3. Numerical plots of the solution ϕ to (3.2) (first row) and of the corresponding solution H to (2.2) (second row), for different values of the 
free parameter b and for γ = 2. The two functions ϕ and H are related by the change of variables (3.1). For small values of b we have a change of 
sign of the solution (left), and for large values of b the solution ϕ converges to the constant �∞ , which corresponds to a power law decay H(y) ∼ 1

y
of H (right). For intermediate values b < b∗ the solution ϕ develops oscillations, which are reflected in a stair-like structure of the function H , 
plotted in a logarithmic scale (center).

Recall that by (3.8) the value |η(z0)| can be made arbitrarily small for d → 0+. Therefore (3.10), together with the 
fact that ψ(z) → �∞ as z → ∞, implies that for any given ε > 0 we can find R > z0 and d0 > 0 such that for all 
d < d0∣∣ϕd(z) − �∞

∣∣ ≤ |η(z)| + |ψ(z) − �∞| ≤ ε for every z ∈ [R − d,R] .
Notice that the estimate itself implies the positivity of ϕd , so that it can be extended up to the point R. By choosing ε
small enough the asymptotic stability of �∞ proved in Proposition 3.1 yields the conclusion. �
3.3. Discussion of the oscillating solutions

Numerical simulations for the delay equation (3.2), see Fig. 3 and the paper [9], show the emergence of oscillations 
in the solution ϕ for values of the free parameter b < b∗, that is in the instability regime of the constant solution. The 
amplitude of such oscillations becomes larger as the free parameter b approaches from above a critical value b̄, for 
which we expect to have an exponentially decaying solution; for b < b̄ we see instead a change of sign in the solution.

If we go back to the function H solving (2.2) with the change of variable (3.1), we see that the oscillating solutions 
are transformed in profiles having a stair-like structure, where a sequence of large plateaus are spaced out by transition 
regions. The overall decay is that of a power law,

H(y) ≥ c

1 + y
,

with the constant c > 0 becoming smaller and smaller as the parameter b approaches the critical value b̄, for which 
we expect an exponentially decaying solution.

We present below an iterative argument which sheds some light on these stair-like solutions observed numerically. 
Our discussion will be restricted to the limit case in which we send to infinity the value γ of the homogeneity. In this 
case a rescaling by the parameter σ , namely h(y) := H(

y
σ
), leads to the equation{

h′(y) = −(
h(2− 1

b y)
)2 + 1

σ

(
h(y)

)2
,

h(0) = 1.
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Since σ → ∞ as γ → ∞, we directly look at the limit case in which we neglect the second term on the right-hand 
side of the equation; moreover we write 2− 1

b = 1
2 (1 + ε), so that the problem can be rewritten as{

h′(y) = −(
h
( y

2 (1 + ε)
))2

,

h(0) = 1.
(3.11)

The critical value of the free parameter b is in this case b̄ = 1, corresponding to ε = 0, for which the explicit solution 
is h̄(y) = e−y . We will show in Proposition 3.5 that solutions for small values of ε > 0 present the stair-like structure 
described above, while for ε < 0 a change of sign takes place.

The advantage of looking at this limit case is that the explicit solution is known for the critical value of the pa-
rameter. However, we expect that the same picture holds in the general case: assuming that for some critical value b̄
there is an exponentially decaying solution, for values of b > b̄ close to b̄ solutions have the same stair-like structure 
described here, while for b < b̄ solutions change sign.

Proposition 3.5. For every ε > 0 small enough the solution h to (3.11) satisfies the bound

h(y) ≥ cε1−α

1 + y
,

where α ∈ (0, 13 ) is any given number, and c > 0 is a constant independent of ε. For ε < 0 the solution becomes 
negative.

Proof. We construct a perturbative solution to (3.11) in the form

h(y) = h̄(y) + εw1(y) + ε2w2(y) + r(y) , (3.12)

where h̄(y) = e−y . We will first show that h remains of order ε in a large interval, at least until y ∼ ε−α . Then, 
rescaling the solution by ε, we obtain a new function h1 solving the same equation as h, and taking prescribed initial 
values of order one in an interval close to the origin; this function has therefore the same behavior as h, that is, it is 
approximately constant of order ε in a large interval. The whole picture obtained by the iteration of this argument gives 
the stair-like solution observed numerically, where the same structure with a large plateau is rescaled and repeated.

Step 1: computation of the asymptotics of h. We take a Taylor expansion

h
( y

2 (1 + ε)
) = h̄

( y
2

) + ε
(

y
2 h̄′( y

2

) + w1
( y

2

)) + ε2
(

y2

8 h̄′′(ξ) + y
2 w′

1(ξ1) + w2
( y

2

))
+ ε3 y

2 w′
2(ξ2) + r

( y
2

) + ε
y
2 r ′(ξ3)

for suitable points ξ, ξ1, ξ2, ξ3 ∈ (
y
2 , y2 (1 + ε)). The right-hand side of equation (3.11) becomes

−(
h
( y

2 (1 + ε)
))2 = −(

h̄
( y

2

))2 − 2εh̄
( y

2

)[ y
2 h̄′( y

2

) + w1
( y

2

)] − ε2
[

y
2 h̄′( y

2

) + w1
( y

2

)]2

− 2ε2h̄
( y

2

)[ y2

8 h̄′′(ξ) + y
2 w′

1(ξ1) + w2
( y

2

)] − 2h̄
( y

2

)
r
( y

2

) + r̃(y)

where with r̃ we denote the collection of all the remainder terms:

r̃(y) = −(
r
( y

2

))2 − 2ε
(

y
2 h̄′( y

2

) + w1
( y

2

))
r
( y

2

) − εy
(
h̄
( y

2

) + r
( y

2

))
r ′(ξ3) − ε2 y2

4

(
r ′(ξ3)

)2

− ε2y
(

y
2 h̄′( y

2

) + w1
( y

2

))
r ′(ξ3) − 2ε2

(
y2

8 h̄′′(ξ) + y
2 w′

1(ξ1) + w2
( y

2

))
r
( y

2

)
− 2ε3

(
y
2 h̄′( y

2

) + w1
( y

2

))(
y2

8 h̄′′(ξ) + y
2 w′

1(ξ1) + w2
( y

2

))
− ε3y

(
y2

8 h̄′′(ξ) + y
2 w′

1(ξ1) + w2
( y

2

))
r ′(ξ3) − ε3y

(
h̄
( y

2

) + r
( y

2

))
w′

2(ξ2)

− ε4
(

y2

8 h̄′′(ξ) + y
2 w′

1(ξ1) + w2
( y

2

))2 − ε4y
(

y
2 h̄′( y

2

) + w1
( y

2

) + y
2 r ′(ξ3)

)
w′

2(ξ2)

− ε5y
(

y2

8 h̄′′(ξ) + y
2 w′

1(ξ1) + w2
( y

2

))
w′

2(ξ2) − ε6 y2

4

(
w′

2(ξ2)
)2

. (3.13)
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The functions w1 and w2 solve the following two equations:

w′
1(y) = −2e− y

2 w1
( y

2

) + ye−y ,

w′
2(y) = −2e− y

2 w2
( y

2

) − (
w1

( y
2

))2 − y2

4 e−y − y2

4 e− y
2 e−ξ − ye− y

2 w′
1(ξ1) + ye− y

2 w1
( y

2

)
,

(3.14)

with w1(0) = 0, w2(0) = 0; the remainder r solves instead

r ′(y) = −2e− y
2 r

( y
2

) + r̃(y) , r(0) = 0. (3.15)

All these equations can be seen as versions of the same linearized problem, with different source terms; by rescaling 
with an exponential factor we can reduce it to the linear delay equation discussed in Section A. Indeed by setting 
w̃1(y) = eyw1(y) we have

w̃′
1(y) = w̃1(y) − 2w̃1

( y
2

) + y, w̃1(0) = 0,

and this equation can be solved using the fundamental solution computed in Lemma A.1: with the notation introduced 
in that lemma,

w1(y) = e−yw̃1(y) = e−y

y∫
0

G(y,η)η dη =
y∫

0

Q(η)η dη + e−y

y∫
0

G̃(y, η)η dη . (3.16)

As the functions Q and G̃ obey the estimates (A.3)–(A.4), from (3.16) we obtain for a fixed β ∈ (0, 12 ) the asymptotics

w1(y) =
∞∫

0

Q(η)η dη + O(e−βy) as y → ∞. (3.17)

Notice that the integral above is a strictly positive quantity: indeed, the function Q is defined in (A.2) as an alternating 
series, Q(η) = ∑∞

n=0(−1)nane
−2nη, an > 0, and it is easily seen that the sequence of the coefficients (an)n is strictly 

decreasing starting from n = 2. Therefore it is sufficient to compute the contribution to the integral in (3.17) by the 
first two terms of the sum, as the rest gives a strictly positive quantity:

c0 :=
∞∫

0

Q(η)η dη =
∞∫

0

e−ηη dη − 4

∞∫
0

e−2ηη dη +
∞∫

0

∞∑
n=2

(−1)nane
−2nηη dη

=
∞∫

0

∞∑
n=2

(−1)nane
−2nηη dη > 0 .

(3.18)

We now look at the equation (3.14) for w2: this is the same type of linearized problem as before; therefore denoting 
by s(y) the source term on the right-hand side of the equation we have the representation formula for the solution

w2(y) = e−y

y∫
0

G(y,η)eηs(η)dη =
y∫

0

Q(η)eηs(η)dη + e−y

y∫
0

G̃(y, η)eηs(η)dη .

Notice that all the source terms have the exponential decay O(ye− y
2 ) as y → ∞, except for the term −(

w1
( y

2

))2 ∼
−c2

0 + O(e− βy
2 ). Therefore using the definition for Q and the decay estimates (A.3)–(A.4) we have as y → ∞

w2(y) =
y∫

0

s(η)dη +
∞∑

n=1

(−1)nan

y∫
0

e(1−2n)ηs(η)dη + e−y

y∫
0

G̃(y, η)eηs(η)dη

= −c2
0y + k0 + O(e− βy

2 ) as y → ∞
(3.19)

for some constant k0 depending on all the source terms.
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Having the two asymptotics (3.17) and (3.19) for w1 and w2, we can compute the next order correction in the 
expansion (3.12), which is given by the function r solving (3.15). Using again the fundamental solution G of the 
linear problem and the bound |G(y, η)| ≤ C0e

y−η, which follows from (A.3)–(A.4), we have

|r(y)| =
∣∣∣∣e−y

y∫
0

G(y,η)eηr̃(η)dη

∣∣∣∣ ≤ C0

y∫
0

|r̃(η)|dη . (3.20)

Let α ∈ (0, 13 ) be any fixed number. We claim that for some constant C > 0

|r(y)| ≤ Cε3−3α for all y ≤ 1

εα
. (3.21)

This estimate can be proved by means of a continuation argument: indeed, assume that

|r(η)| + |r ′(η)| ≤ Cε3−3α for all η ≤ y, (3.22)

for some y ∈ (0, ε−α). This estimate is certainly true for y small enough, as r(0) = r ′(0) = 0. By plugging (3.22)
into the explicit expression (3.13) of r̃ one finds after straightforward estimates, using also the asymptotics (3.17) and 
(3.19) for w1 and w2, that for all η ≤ y

|r̃(η)| ≤ C1ε
2αε3−3α

for a new constant C1 depending ultimately on C, c0, and k0. In turn, by (3.20) we obtain

|r(η)| ≤ C0C1ε
2αε3−3αη ≤ C0C1ε

αε3−3α ,

while (3.15) yields

|r ′(y)| ≤ 2e− y
2
∣∣r( y

2

)∣∣ + |r̃(y)| ≤ (
2C0C1 + C1

)
εαε3−3α .

Therefore, if ε is small enough, from the previous two estimates it follows

|r(y)| + |r ′(y)| ≤ 1

2
Cε3−3α .

Since we obtained this inequality just assuming (3.22) for some y ∈ (0, ε−α), we conclude by a continuation argument 
that the claim (3.21) holds for every y ≤ ε−α .

Finally, by collecting (3.17), (3.19) and (3.21) we obtain from (3.12)

h(y) = c0ε − c2
0ε

2y + k0ε
2 + O(e−y + εe−βy + ε2e− βy

2 + ε3−3α).

This asymptotics is valid at least until y ≤ ε−α . In particular in the region y ∼ ε−α the exponential terms give a very 
small contribution and can be neglected. Therefore we can write

h(y) = c0ε + k0ε
2 − c2

0ε
2y + O(ε3−3α) for y ∈

[ ε−α

c0 + k0ε
,

2ε−α

c0 + k0ε

]
. (3.23)

Notice that if ε is negative a change of sign in the solution takes place.

Step 2: rescaling. The idea is now to rescale the function h by ε, and simultaneously to rescale the independent variable 
by ε, in order to obtain a new function solving an equation with the same structure as before and taking prescribed 
values of order one in a small interval close to the origin; the asymptotic of this function will be very similar to the 
one computed for h in the previous step, so that we will repeat the argument and iterate the method. Recall that, given 
a solution h to (3.11) (without initial condition), we obtain a new solution by the rescaling h̃(y) = λh(λy). Then we 
define

h1(y) = 1

c0ε + k0ε2 h
( y

c0ε + k0ε2

)
,

and in view of (3.23) we have

h1(y) = 1 − y + O(ε2−3α) for y ∈ [ε1−α,2ε1−α] .
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We therefore consider the initial value problem{
h′

1(y) = −(
h1

( y
2 (1 + ε)

))2
y > 2ε1−α,

h1(y) = 1 − y + O(ε2−3α) y ∈ [ε1−α,2ε1−α]. (3.24)

This problem is very similar to the original one, except for the fact that we prescribe here the values of h1 in an interval 
close to the origin instead that at the single point y = 0. We write as in (3.12)

h1(y) = h̄(y) + εw1,1(y) + ε2w1,2(y) + r1(y) , (3.25)

where w1,1, w1,2 and r1 solve the same equations as w1, w2 and r in the previous step, namely (3.14)–(3.15), for 
y > 2ε1−α and take prescribed values

w1,1(y) = g(y), w1,2(y) = r1(y) = 0 for y ∈ [ε1−α,2ε1−α] (3.26)

with g(y) = O(ε1−3α).
The asymptotics of h1 can be now computed in the same manner as before; here we only sketch the argument 

without giving the full details. The function w1,1 can be written in terms of the fundamental solution of the linear 
problem using the representation formula

w1,1(y) = e−y

y∫
2ε1−α

G(y,η)η dη + e−yG(y,2ε1−α)e2ε1−α

g(2ε1−α)

− 2e−y

min{y,4ε1−α}∫
2ε1−α

G(y,η)e
η
2 g

(η

2

)
dη .

The asymptotics of the first term is, as in the previous step,

e−y

y∫
2ε1−α

G(y,η)η dη = w1(y) − e−y

2ε1−α∫
0

G(y,η)η dη = c0 + O(e−βy) + O(ε2−2α) .

For the other two terms in the expression of w1,1 one finds, using the formula (A.2) for the fundamental solution and 
the bounds (A.3)–(A.4),

e−yG(y,2ε1−α)e2ε1−α

g(2ε1−α) − 2e−y

min{y,4ε1−α}∫
2ε1−α

G(y,η)e
η
2 g

(η

2

)
dη

= Q(2ε1−α)e2ε1−α

g(2ε1−α) + O(e−βy) .

Notice that the first term on the right-hand side is just a constant of order ε1−3α (that is the order of the initial datum 
g). Therefore we obtain the following asymptotics for the function w1,1:

w1,1(y) = c1(ε) + O(ε2−2α + e−βy) (3.27)

for a positive constant c1(ε) = c0 + Q(2ε1−α)e2ε1−α
g(2ε1−α), depending on ε, which differs from c0 only up to a 

small remainder of order ε1−3α .
We now look at the term w1,2, which solves the same equation (3.14) as w2 (with w1 replaced by w1,1) for 

y > 2ε1−α , with homogeneous initial condition (3.26). Denote by s1(y) the sources in the equation for w1,2. As in 

the previous step, all the terms in s1 decay exponentially, except for −(w1,1(
y
2 ))2 ∼ −c1(ε)

2 + O(ε2−2α + e− βy
2 ). 

Therefore using the representation formula we find

w1,2(y) = e−y

y∫
1−α

G(y,η)eηs1(η)dη = −c1(ε)
2y + k1 + O(ε1−α) + O(ε2−2αy) + O(e− βy

2 ) , (3.28)
2ε
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where this equality can be deduced following the same passages leading to (3.19); here k1 is a constant depending on 
all the source terms.

Finally, using the asymptotics of w1,1 and w1,2 just computed, one can apply the same continuation argument as 
in the previous step to obtain

|r1(y)| ≤ Cε3−3α for all y ≤ 1

εα
. (3.29)

By collecting all the asymptotic behaviors (3.27), (3.28), (3.29) we deduce from (3.25)

h1(y) = c1(ε)ε + k1ε
2 − c1(ε)

2ε2y + O(ε3−3α + e− βy
2 ),

valid for y ≤ ε−α . For y ∼ ε−α , the exponential terms are negligible and we finally obtain an asymptotics which 
resembles (3.23):

h1(y) = c1(ε)ε + k1ε
2 − c1(ε)

2ε2y + O(ε3−3α) for y ∈
[

ε−α

c1(ε) + k1ε
,

2ε−α

c1(ε) + k1ε

]
. (3.30)

Step 3: iteration. We can now iterate the previous rescaling argument: at the n-th step the functions h1, . . . , hn have 
been defined, with the asymptotics

hj (y) = cj (ε)ε + kj ε
2 − cj (ε)

2ε2y + O(ε3−3α) for y ∈
[

ε−α

cj (ε) + kj ε
,

2ε−α

cj (ε) + kj ε

]
. (3.31)

Then we set

hn+1(y) = 1

cn(ε)ε + knε2 hn

( y

cn(ε)ε + knε2

)
,

so that the function hn+1 also solves the same equation as h for y ≥ 2ε1−α and in view of (3.31) takes the initial values

hn+1(y) = 1 − y + O(ε2−3α) for y ∈ [ε1−α,2ε1−α] . (3.32)

This is the very same problem as (3.24), so that the previous step yields that the asymptotics (3.31) is valid also for 
j = n + 1. Since the structure of the problem remains the same in all steps, one can check that the constants cn(ε), kn

remain of order one for every n.
Therefore we obtain the formula for h

h(y) = pnhn+1(pny) where pn :=
n∏

j=0

(
cj (ε)ε + kj ε

2). (3.33)

This representation explains the stair-like structure observed numerically. For every fixed θ ∈ [1, 2] and for y = θε1−α

pn

one then gets in view of (3.32)

h(y) = pnhn+1(θε1−α) � pn = θε1−α

y
,

which proves the estimate in the statement. �
4. Formal asymptotics in the regime γ → 1

In this section we discuss the features of solutions to (1.9) for values of the homogeneity γ close to 1. We work with 
the variables introduced in (2.1). The regime γ → 1+ corresponds to σ → 1+ and b → ∞, therefore it is convenient 
to introduce two small parameters ε > 0, δ > 0 by setting

ε = 1 − 2− 1
b , δ = 2γ−1− 2

b − 1

and to write the equation (2.2) in the following form:{
H ′(y) = −(1 + δ)

(
H(y(1 − ε))

)2 + (
H(y)

)2
,

H(0) = 1 .
(4.1)
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4.1. The limit case: γ = 1

We recall what is known in the case of the diagonal kernel K(x, y) = x2δ(x − y). Most of the following ob-
servations have already been made in [9], but a wrong conclusion was drawn in [9, Theorem 2], which we correct 
here.

In general, in the case of homogeneity γ = 1 one looks for self-similar solutions to Smoluchowski’s equation (1.1)
in the form f (ξ, t) = e−2btF (ξe−bt ), x = ξe−bt , b > 0, for which the self-similar profile F solves

−b
(
2F(x) + xF ′(x)

) = 1

2

x∫
0

K(x − y, y)F (x − y)F (y)dy −
∞∫

0

K(x,y)F (x)F (y)dy .

In the case of the diagonal kernel, the equation takes the form

−2bF(x) − bxF ′(x) = 1

4

(x

2

)2(
F(x/2)

)2 − x2(F(x)
)2

,

and we look for a solution with F(x) ∼ c0x
−2 as x → 0+. With the rescaling �(x) = x2F(x), which removes the 

singularity at the origin, the equation becomes

bx�′(x) = −(
�(x/2)

)2 + (
�(x)

)2
, �(0) = 1, (4.2)

where we have normalized c0 = 1 by a simple rescaling.
We wish to find a unique value of the parameter b for which (4.2) has a positive solution decaying exponentially 

to zero. This shooting parameter can be interpreted as the exponent b yielding the expansion of the clusters as ebt . 
By integrating (4.2) between x0 and x and sending x0 → 0+, using the normalization �(0) = 1, we can write the 
equation in the integrated form

b�(x) =
x∫

x
2

1

s

(
�(s)

)2 ds + b − ln 2 , (4.3)

and we see that the critical value b for which the solution decays to zero is the unique value such that the additive 
constant in (4.3) is zero, that is

b = ln 2 . (4.4)

Notice that a C1 solution to (4.2) for b = ln 2 necessarily satisfies �′(0) = 0, see Remark 4.2 below; in this case the 
only analytic solution at the origin is the constant solution � ≡ 1, as one can directly check by looking for a solution 
in power series. However, we can construct a different solution in the form

�(x) = 1 +
∞∑

n=1

anx
nα, (4.5)

where α is the unique positive solution to

bα

2(1 − 2−α)
= 1 (4.6)

(notice in particular that α > 2). By using the ansatz (4.5) in the equation (4.2), it is straightforward to determine the 
coefficients an by the recurrence relation( nbα

1 − 2−nα
− 2

)
an =

n−1∑
m=1

aman−m , n ≥ 2,

where the value of a1 is arbitrary. The series (4.5) is locally convergent in a finite interval around zero, and from 
the integrated equation (4.3) we see that � is always positive. Choosing a1 < 0, the solution is monotone decreasing 
in a neighborhood of the origin, and the equation (4.2) implies that it remains decreasing also for larger x > 0. 
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Furthermore, since � is uniformly bounded, by standard existence and uniqueness results for ordinary differential 
equations it can be uniquely continued to all the positive real axis. Finally using (4.3) and the monotonicity of � we 
find

(ln 2)�(x) ≤ (
�(x/2)

)2
x∫

x
2

1

s
ds = (ln 2)

(
�(x/2)

)2
,

from which the exponential decay to zero can be deduced. We summarize the previous discussion in a proposition.

Proposition 4.1 (The case γ = 1). Let b = ln 2. For every a1 < 0 the equation (4.2) has a unique solution in the 
form (4.5), where α is the unique positive solution to (4.6). Such solution is positive, monotonically decreasing, and 
converges to zero exponentially as x → ∞.

Remark 4.2. If � is a C1 solution to (4.2), then the right-hand side of the equation obeys

lim
x→0+

(�(x))2 − (�(x/2))2

x
= �′(0) ,

which forces (b − 1)�′(0) = 0. Therefore for a generic value of b �= 1, the differentiability at the origin of a solution 
to (4.2) implies that �′(0) = 0.

In the case b = 1, the argument given by Leyvraz in [9, Theorem 2] shows that one can construct an analytic 
solution in a neighborhood of the origin for every (negative) value of �′(0). But in this case the integrated equation is

�(x) =
x∫

x
2

1

s

(
�(s)

)2 ds + 1 − ln 2

from which we see that this solution cannot decay exponentially to zero – here is where Leyvraz’s argument is wrong: 
indeed in formula (5.17) in [9] there is a missing additive constant. Therefore the solution found by Leyvraz is an 
analytic, nonconstant solution to (4.2) for b = 1; such solution is positive and monotone decreasing, but it does not 
decay to zero as claimed in [9], and it actually converges to the constant 1−ln 2

ln 2 .

4.2. Formal asymptotics

We now go back to the formal analysis of the equation (4.1) in the asymptotic regime ε → 0+, δ → 0+. We 
approximate H(y) � 1 − δ�(y), where � solves the linearized equation{

�′(y) = 2�(y) − 2�((1 − ε)y) + 1 ,

�(0) = 0 .
(4.7)

By looking for a solution in power series �(y) = ∑∞
n=0 any

n, we have a0 = 0, a1 = 1, and the recurrence relation 
(n + 1)an+1 = 2an(1 − (1 − ε)n) for n = 1, 2, . . ., which gives

�(y) = y +
∞∑

n=1

2n
∏n

k=1[1 − (1 − ε)k]
(n + 1)! yn+1 .

We want to compute the asymptotics of � for large values (of order 1
ε

). To this aim we introduce the variable 
η = εy and we write the previous series in the form

�
(η

ε

)
= 1

2

∞∑
n=0

eSn(η,ε) , Sn(η, ε) := (n + 1) ln
(2η

ε

)
+

n∑
k=1

ln
(
1 − (1 − ε)k

) −
n+1∑
k=1

lnk . (4.8)

By elementary manipulations the second term in Sn can be written as
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n∑
k=1

ln
(
1 − (1 − ε)k

) =
n∑

k=1

ln(kε) +
n∑

k=1

ln
(1 − ek ln(1−ε)

kε

)
=

n∑
k=1

lnk + n ln ε +
n∑

k=1

ln
(1 − e−kε

kε

)
+

n∑
k=1

ln
(1 − ek ln(1−ε)

1 − e−kε

)
.

Therefore by inserting this expression in (4.8) we have

Sn(η, ε) = (n + 1) ln(2η) − ln ε − ln(n + 1)

+
n∑

k=1

ln
(1 − e−kε

kε

)
+

n∑
k=1

ln
(1 − ek ln(1−ε)

1 − e−kε

)
.

(4.9)

We further approximate the first sum on the right-hand side of (4.9) by an integral, using Euler–Maclaurin formula: 
setting f (x) = ln

( 1−e−εx

εx

)
, we have

n∑
k=1

ln
(1 − e−kε

kε

)
=

n∫
0

f (x)dx + 1

2

(
f (n) − f (0)

) +
n∫

0

B1(x − [x])f ′(x)dx

=
n∫

0

ln
(1 − e−εx

εx

)
dx + 1

2
ln

(1 − e−nε

nε

)
+

n∫
0

B1(x − [x])f ′(x)dx

(here B1(x) = x − 1
2 is the first Bernoulli polynomial, and [x] denotes the integer part of x). Substituting this expres-

sion in (4.9) we end up with

Sn(η, ε) = (n + 1) ln(2η) + 1

ε

nε∫
0

ln
(1 − e−t

t

)
dt + 1

2
ln(1 − e−nε)

− 3

2
ln ε − ln(

√
n(n + 1)) + Rn(ε) ,

(4.10)

where

Rn(ε) :=
n∑

k=1

ln
(1 − ek ln(1−ε)

1 − e−kε

)
+

nε∫
0

(
t
ε

− [ t
ε
] − 1

2

)e−t − 1 + te−t

t (1 − e−t )
dt . (4.11)

By inserting (4.10) into (4.8) we obtain the following representation formula for �:

�
(η

ε

)
= 1

2ε
3
2

∞∑
n=0

√
1 − e−nε

√
n(n + 1)

eS̄n(η,ε)eRn(ε) , (4.12)

where we denoted by S̄n(η, ε) the leading order part in (4.10), given by the first two terms:

S̄n(η, ε) := (n + 1) ln(2η) + 1

ε

nε∫
0

ln
(1 − e−t

t

)
dt .

We now use Laplace’s method (see for instance [1]) to find the leading behavior of the sum (4.12) as ε → 0+. We 
have to identify the largest term in the series, and for this we compute the point n∗ at which the expression S̄n(η, ε) is 
maximal (the other terms will result of lower order). We easily compute the derivative

∂S̄n(η, ε)

∂n
= ln(2η) + ln

(1 − e−nε

nε

)
.

For η > 1
2 , the equation t

1−e−t = 2η has a unique positive root t∗(η) and the maximum of the expression S̄n(η, ε) is 

attained for n∗ = t∗(η) . For n − n∗ small we can approximate S̄n by its Taylor expansion around the point n∗,

ε
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S̄n(η, ε) � S̄n∗(η, ε) + 1

2

∂2S̄n(η, ε)

∂n2

∣∣∣∣
n=n∗

(
n − n∗

)2

= ln(2η) + 1

ε

[
t∗ ln(2η) +

t∗∫
0

ln
( 1−e−t

t

)
dt

]
+ ε

2t∗

(
t∗e−t∗

1 − e−t∗ − 1

)(
n − n∗

)2

= ln(2η) + W(η)

ε
− εD(η)

(
n − t∗(η)

ε

)2 (4.13)

where W(η) := ∫ t∗(η)

0 ln
( 2η(1−e−t )

t

)
dt and D(η) := − 1

2t∗ ( t∗e−t∗
1−e−t∗ − 1) (notice that W(η) and D(η) are positive quan-

tities by the definition of the point t∗(η)).
Using the principles of Laplace’s method, to compute the asymptotics of the series (4.12) as ε → 0+ we can keep 

only the terms with n ∈ [n∗(1 −σ), n∗(1 +σ)], where σ > 0 is small. The errors that we make with this approximation 

are indeed subdominant (exponentially small) with respect to the leading order behavior, which is e
W(η)

ε . To see this, 
first observe that for values of n outside this interval the value of the leading part S̄n differs from its maximum by a 
quantity of order 1

ε
, that is

S̄n(η, ε) ≤ W(η)

ε
− α

ε
for |n − n∗| > σn∗ (4.14)

for some α > 0. Fix now a sufficiently large constant N and consider first the terms with n ≤ N
ε

: for such terms one 
can check from (4.11) by elementary estimates that

Rn(ε) ≤ 2N for n ≤ N

ε
; (4.15)

therefore for such n’s in the series (4.12) we have∑
n≤ N

ε|n−n∗|>σn∗

√
1 − e−nε

2ε
3
2
√

n(n + 1)
eS̄n(η,ε)eRn(ε) ≤ Nε− 5

3 e
W(η)−α

ε e2N

and these terms do not contribute to the asymptotics of (4.12) as ε → 0. Also the terms in the series with n > N
ε

can 
be neglected: indeed we can write by (4.8)

Sn(η, ε) = S[ N
ε

](η, ε) + (n − [N
ε
]) ln

(2η

ε

)
+

n∑
k=[ N

ε
]+1

ln
(
1 − (1 − ε)k

) −
n+1∑

k=[ N
ε

]+2

lnk

≤ S[ N
ε

](η, ε) + ln
(2η

ε

)
+ (n − [N

ε
] − 1)

(
ln

(2η

ε

)
− ln

(N

ε

))
= S[ N

ε
](η, ε) + ln

(2η

ε

)
− (n − [N

ε
] − 1) ln

( N

2η

)
so that by (4.14) and (4.15)

∞∑
n=[ N

ε
]+1

eSn(η,ε) ≤ 2η

ε
eS[N/ε](η,ε)

∞∑
m=0

e
− ln( N

2η
)m ≤ Cη

ε
e

W(η)−α
ε e2N

and also this term decays exponentially faster than the rest of the sum as ε → 0.
This shows that the asymptotics of (4.12) is determined only by the terms of the series with |n − n∗| ≤ σn∗: for 

such values we can approximate S̄n by its value at the maximum using (4.13),

�
(η

ε

)
∼ 1

2ε
3
2

[n∗(1+σ)]∑
n=[n∗(1−σ)]

√
1 − e−nε

√
n(n + 1)

eS̄n(η,ε)eRn(ε)

∼ η
√

1 − e−t∗(η)

t∗(η)
3
2

eRn∗ (ε)e
W(η)

ε

[n∗(1+σ)]∑
e−εD(η)(n−n∗)2

.

n=[n∗(1−σ)]
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We can now extend the region of summation to infinity without changing the asymptotics, and the resulting sum can 
be seen as a Riemann sum of a Gaussian integral:

�
(η

ε

)
∼ η

√
1 − e−t∗(η)

t∗(η)
3
2

eRn∗ (ε)e
W(η)

ε

∞∑
n=−∞

e−εD(η)n2

= η
√

1 − e−t∗(η)

εt∗(η)
3
2

eRn∗ (ε)e
W(η)

ε

∞∑
n=−∞

e− D(η)
ε

(εn)2
ε

∼ η
√

1 − e−t∗(η)

εt∗(η)
3
2

eRn∗ (ε)e
W(η)

ε

∞∫
−∞

e− D(η)
ε

x2
dx

= η
√

π
√

1 − e−t∗(η)

√
ε
√

D(η)t∗(η)
3
2

eRn∗ (ε)e
W(η)

ε .

Summing up, we have obtained an asymptotics for the function � solving the linearized problem (4.7) of the following 
form:

�
(η

ε

)
∼ U(η)√

ε
e

W(η)
ε as ε → 0+, (4.16)

where η > 1
2 is a parameter.

We now go back to the solution H to the nonlinear problem (4.1). By (4.16) we have

H(y) ∼ 1 − δ�(y) ∼ 1 − δ√
ε
U(η)e

W(η)
ε , y = η

ε
. (4.17)

This asymptotic is valid until δ� becomes of order 1. Suppose that the two parameters ε, δ appearing in (4.1) satisfy 
a relation of the form

δ =
√

ε

U(η̄)
e− W(η̄)

ε (4.18)

for some η̄ > 1
2 which now plays the role of a free parameter. Then for values of the variable y close to the point 

ȳ := η̄
ε

we have by (4.17)

H(y) ∼ 1 − δ√
ε
U

(
η̄ + ε(y − ȳ)

)
e

W(η̄+ε(y−ȳ))
ε

∼ 1 − δ√
ε
U(η̄)e

W(η̄)
ε

+W ′(η̄)(y−ȳ)

= 1 − eW ′(η̄)(y−ȳ) .

Then in the transition region where y ∼ ȳ = η̄
ε

we can consider the translated function h(z) := H(ȳ + z), whose 
behavior is determined by the approximate equation

h′(z) = −(
h(z − η̄)

)2 + (
h(z)

)2

(notice that we can neglect the term multiplied by the parameter δ, which is exponentially small with respect to ε by 
(4.18)), with the matching condition

h(z) ∼ 1 − eW ′(η̄)z as z → −∞.

Notice that with the change of variables �(x) = h(
η̄ ln x
ln 2 ) we obtain the equation

ln 2

η̄
x�′(x) = −(

�(x/2)
)2 + (

�(x)
)2

,

which is nothing else but the equation for the self-similar profile in the limit case of homogeneity γ = 1, see (4.2).
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We now want to study the transition from the region where y ∼ ȳ = η̄
ε

to the region y → ∞. To this aim, we keep 
only the dominant terms in the equation, which are

H ′(y) = −(
H(y(1 − ε))

)2
. (4.19)

We first consider the region where 1 � y − ȳ � 1
ε

; in this region we have εy ∼ εȳ = η̄ and we approximate the 
equation by

H ′(y) = −(
H(y − η̄)

)2
. (4.20)

We can expect an asymptotics in the form

H(y) ∼ K0e
σ(y−ȳ)e−c0e

σ(y−ȳ)

. (4.21)

Indeed by inserting this ansatz in (4.20) we obtain

−K0c0σe2σ(y−ȳ)e−c0e
σ(y−ȳ) ∼ −K2

0 e−2σ η̄e2σ(y−ȳ)e−2c0e
−σ η̄eσ(y−ȳ)

,

which yields the relations

2e−σ η̄ = 1, c0σ = K0e
−2σ η̄ ,

whence

σ = ln 2

η̄
, K0 = 4c0 ln 2

η̄
. (4.22)

The constant c0 is the unique degree of freedom in the asymptotics (4.21).
We next compute the asymptotics for the full problem (4.19) as y → ∞: we expect an exponentially decaying 

solution and we hence make the ansatz

H(y) ∼ K1y
αe−c1y

β

, (4.23)

which inserted in (4.19) gives

−K1c1βyα+β−1e−c1y
β ∼ −K2

1 (1 − ε)2αy2αe−2c1(1−ε)βyβ

,

from which we obtain the relations

2(1 − ε)β = 1, α + β − 1 = 2α, c1β = K1(1 − ε)2α,

whence

β = − ln 2

ln(1 − ε)
∼ ln 2

ε
, α = β − 1 ∼ ln 2

ε
, K1 = 4c1β(1 − ε)2 ∼ 4c1 ln 2

ε
. (4.24)

Again the only degree of freedom of the solution is the constant c1.
We finally examine the transition from the first asymptotics (4.21) to the second (4.23), and we show that the two 

asymptotics can be connected: indeed, in the region where the approximation (4.20) is valid, that is for 1 � y − ȳ � 1
ε

, 
we can express (4.23) in the following form, by writing y = ȳ + (y − ȳ):

K1y
αe−c1y

β = K1
(
ȳ + (y − ȳ)

)α
e−c1(ȳ+(y−ȳ))β

= K1ȳ
α
(

1 + y − ȳ

ȳ

)α

exp
(
−c1ȳ

β
(

1 + y − ȳ

ȳ

)β)
≈ K1

( η̄

ε

)α

e
α
ȳ
(y−ȳ) exp

(
−c1

( η̄

ε

)β

e
β
ȳ
(y−ȳ)

)
.

Here we used the approximations (1 + y−ȳ
ȳ

)α ≈ e
α
ȳ
(y−ȳ), (1 + y−ȳ

ȳ
)β ≈ e

β
ȳ
(y−ȳ), which follow from the fact that 

ȳ = η̄
ε

and that both α and β are of order 1
ε

. Moreover, as α = β − 1 = ln 2
ε

(1 + O(ε)), in the region where ε(y − ȳ)

is small we also have

e
α
ȳ
(y−ȳ) = e

β
ȳ
(y−ȳ)

(1 + O(ε)) = e
ln 2
η̄

(y−ȳ)
(1 + O(ε)).
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Therefore

K1y
αe−c1y

β ≈ K1

( η̄

ε

)α

e
ln 2
η̄

(y−ȳ) exp
(
−c1

( η̄

ε

)β

e
ln 2
η̄

(y−ȳ)
)

. (4.25)

By comparing the right-hand side of (4.25) with the first asymptotics (4.21), and recalling that σ = ln 2
η̄

, we see that 
the two expressions agree, up to identifying

K0 = K1

( η̄

ε

)α

, c0 = c1

( η̄

ε

)β

. (4.26)

We only need to check that the two conditions K0 = 4c0 ln 2
η̄

and K1 ∼ 4c1 ln 2
ε

, obtained in (4.22) and (4.24) respec-
tively, are valid with the positions (4.26): indeed by using the first two conditions in (4.24) we obtain

K1 = K0

( ε

η̄

)α = 4c0 ln 2

η̄

( ε

η̄

)α = 4c1 ln 2

η̄

( ε

η̄

)α−β = 4c1 ln 2

ε
,

and the two asymptotics are therefore equivalent, with the value of c1 obtained from the value of c0 by means of 
c1 = c0(ε/η̄)β .

In conclusion, for small ε there is a critical value of the parameter δ, which is exponentially small in ε and is 
precisely given by the relation (4.18), such that the asymptotics of the solution H to (4.1) for large values y → ∞ is 
given by (4.23).

5. Rigorous proof in the case γ → ∞

The existence of a critical value of the parameter b for which there is a positive solution to (1.9) with exponential 
decay as x → ∞ can be proved rigorously for large values of the homogeneity γ . The main result of this section is 
the following.

Theorem 5.1 (The case γ → ∞). There exists γ̄ > 1 with the following property. For every γ > γ̄ there exist b̄(γ ) > 0
and a positive solution � to (1.9) with exponential decay.

In order to prove the theorem, we again consider the formulation (2.2) of the equation and we rescale the solution 
by the parameter σ , as was done in Section 3.3: by setting h(x) := H( x

σ
), we have that h solves{

h′(x) = −(
h
(

x
2 (1 + ε)

))2 + η
(
h(x)

)2
,

h(0) = 1,
(5.1)

where we also introduced two small parameters ε, η given by

2
1
b = 2

1 + ε
, η = 1

σ
= 2

2
b
+1−γ . (5.2)

We will prove Theorem 5.1 by showing that for every η > 0 sufficiently small, there is a unique value of the parameter 
ε = ε(η) > 0 such that the corresponding solution h(x; ε(η), η) to (5.1) satisfies

h(x; ε(η), η) > 0, lim inf
x→∞

(
x h(x; ε(η), η)

)
= 0

(and actually decays exponentially fast).

Remark 5.2. One can get an insight into the behavior of the solution to (5.1) by looking at the limit problem 
for η = 0, which has been discussed in detail in Section 3.3. For ε = 0 the problem has the explicit solution 
h̄(x) = e−x . Moreover, the solutions corresponding to ε < 0 cross to negative values, while for ε > 0 one has 
lim infx→∞

(
x h(x; ε(η), η)

)
> 0.

The same picture outlined in the previous remark should remain valid also for small values of η. The strategy of 
the proof is the following: we look for a solution for two given values η, ε of the parameters in the form
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h(x; ε, η) = h̄(x) + W(x; ε, η) , (5.3)

where h̄(x) = e−x is the explicit solution corresponding to η = ε = 0. By substituting the ansatz (5.3) in (5.1) we find 
that W satisfies

Wx(x; ε, η) = −2e− x
2 W(x

2 ; ε, η) + R[W ](x; ε, η), W(0; ε, η) = 0,

where

R[W ](x; ε, η) := e−x − e−x(1+ε) + 2e− x
2 W(x

2 ; ε, η) − 2e− x
2 (1+ε)W(x

2 (1 + ε); ε, η)

− (
W(x

2 (1 + ε); ε, η)
)2 + η

(
e−x + W(x; ε, η)

)2
.

(5.4)

The function ϕ(x; ε, η) = exW(x; ε, η) therefore solves the linear problem

ϕx(x; ε, η) = ϕ(x; ε, η) − 2ϕ(x
2 ; ε, η) + exR[W ](x; ε, η) , x > 0,

with ϕ(0; ε, η) = 0. This delay equation, where the nonlinearity R[W ] is treated as a source term, is studied in details 
in Section A; we can write a representation formula for ϕ by using the fundamental solution obtained in Lemma A.1:

W(x; ε, η) = e−xϕ(x; ε, η) = e−x

x∫
0

G(x, ξ)eξR[W ](ξ ; ε, η)dξ

=
x∫

0

eξQ(ξ)R[W ](ξ ; ε, η)dξ +
x∫

0

eξ−xG̃(x, ξ)R[W ](ξ ; ε, η)dξ .

If we introduce the quantity

F(W,ε,η) :=
∞∫

0

eξQ(ξ)R[W ](ξ ; ε, η)dξ (5.5)

we can rewrite the equation for W as follows:

W(x; ε, η) = F(W,ε,η) −
∞∫

x

eξQ(ξ)R[W ](ξ ; ε, η)dξ +
x∫

0

eξ−xG̃(x, ξ)R[W ](ξ ; ε, η)dξ . (5.6)

The value F(W, ε, η) represents the constant value of W at infinity. The goal is now to show that for every sufficiently 
small value of the parameters ε and η there is a unique solution to the equation

W(x; ε, η) = −
∞∫

x

eξQ(ξ)R[W ](ξ ; ε, η)dξ +
x∫

0

eξ−xG̃(x, ξ)R[W ](ξ ; ε, η)dξ , (5.7)

which will be obtained by means of a fixed point argument (Lemma 5.3), and furthermore to prove that for every η
small enough we can find a unique ε = ε(η) such that the corresponding solution satisfies F(W(·; ε(η), η), ε(η), η) =
0 and is positive (Lemma 5.5).

Lemma 5.3 (Existence by fixed point). There exist ε0 > 0 and η0 > 0 such that for every ε ∈ [0, ε0] and η ∈ [0, η0]
the equation (5.7) has a unique solution W(·; ε, η) ∈ C0([0, ∞)) with

|W(x; ε, η)| ≤ (ε + η)Me−δx (5.8)

for constants δ > 0 and M > 0 independent of ε and η.

Proof. Let δ ∈ (0, β), where β ∈ (0, 12 ) is as in Lemma A.1, and let M > 1 be a fixed constant, to be chosen later 
independently of ε and η (possibly depending on δ). We can assume without loss of generality (ε + η)M2 ≤ 1. We 
introduce the space
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Xε,η :=
{
W ∈ C0([0,∞)) : |W(x)| ≤ (ε + η)Me−δx

}
with norm

‖W‖ := sup
x≥0

|W(x)|
e−δx

.

We define an operator Tε,η acting on W ∈ Xε,η by setting

Tε,η[W ](x) := −
∞∫

x

eξQ(ξ)Rε,η[W ](ξ)dξ +
x∫

0

eξ−xG̃(x, ξ)Rε,η[W ](ξ)dξ , (5.9)

where

Rε,η[W ](x) := e−x − e−x(1+ε) + 2e− x
2 W(x

2 ) − 2e− x
2 (1+ε)W(x

2 (1 + ε))

− (
W(x

2 (1 + ε))
)2 + η

(
e−x + W(x)

)2
.

(5.10)

We claim that for ε and η sufficiently small Tε,η is a contraction on Xε,η, so that Banach’s Fixed Point Theorem yields 
the existence of a unique W ∈ Xε,η satisfying Tε,η[W ] = W , which is equivalent to (5.7).

We first show that Tε,η maps Xε,η into itself. It is convenient to split the term Rε,η into two parts, which will be 
treated separately:

R1
ε,η[W ](x) := e−x − e−x(1+ε) − (

W(x
2 (1 + ε))

)2 + η
(
e−x + W(x)

)2
,

R2
ε,η[W ](x) := 2e− x

2 W(x
2 ) − 2e− x

2 (1+ε)W(x
2 (1 + ε)) .

Given any W ∈ Xε,η, we estimate the quantity R1
ε,η[W ] by means of the bound in the definition of the space Xε,η:

|R1
ε,η[W ](x)| ≤ εxe−x + |W(x

2 (1 + ε))|2 + 2ηe−2x + 2η|W(x)|2
≤ εxe−x + (ε + η)2M2e−δx(1+ε) + 2ηe−2x + 2η(ε + η)2M2e−2δx

≤ C1(ε + η)e−δx (5.11)

for a numerical constant C1 > 0, independent of ε, η, δ, and M (here we also used the assumption (ε + η)M2 ≤ 1). 
By plugging this estimate into the definition (5.9) of Tε,η and using the bounds (A.3)–(A.4) we get

|T 1
ε,η[W ](x)| =

∣∣∣∣ −
∞∫

x

eξQ(ξ)R1
ε,η[W ](ξ)dξ +

x∫
0

eξ−xG̃(x, ξ)R1
ε,η[W ](ξ)dξ

∣∣∣∣
≤ (ε + η)C0C1

( ∞∫
x

e−δξ dξ +
x∫

0

eβ(ξ−x)e−δξ dξ

)

≤ (ε + η)C0C1

(1

δ
+ 1

β − δ

)
e−δx . (5.12)

We now prove a similar bound on the part of the operator involving R2
ε,η[W ]. By a change of variable we have

∣∣∣∣
∞∫

x

eξQ(ξ)R2
ε,η[W ](ξ)dξ

∣∣∣∣ ≤ 2

∞∫
x

∣∣∣eξQ(ξ) − 1
1+ε

e
ξ

1+ε Q(
ξ

1+ε
)

∣∣∣e− ξ
2 |W(

ξ
2 )|dξ

+ 2

1 + ε

x(1+ε)∫
e

ξ
1+ε |Q(

ξ
1+ε

)|e− ξ
2 |W(

ξ
2 )|dξ
x
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≤ 2(ε + η)MC0

(
2ε

∞∫
x

e− ξ
2 e− 1

2 δξ dξ +
x(1+ε)∫
x

e− ξ
2 e− 1

2 δξ dξ

)
≤ ε(ε + η)MC0C1

(
1 + x)e−( 1

2 + δ
2 )x ≤ εC0C1e

−δx (5.13)

where the second inequality follows by using (A.3) and the bound on W given by the definition of the space Xε,η, and 
C1 is a numerical constant as before (possibly different). Similarly, using (A.4),∣∣∣∣

x∫
0

eξ−xG̃(x, ξ)R2
ε,η[W ](ξ)dξ

∣∣∣∣ ≤ 2e−x

x∫
0

∣∣∣eξ G̃(x, ξ) − 1
1+ε

e
ξ

1+ε G̃(x,
ξ

1+ε
)

∣∣∣e− ξ
2 |W(

ξ
2 )|dξ

+ 2e−x

1 + ε

x(1+ε)∫
x

e
ξ

1+ε |G̃(x,
ξ

1+ε
)|e− ξ

2 |W(
ξ
2 )|dξ

≤ 2(ε + η)MC0

(
ε

x∫
0

(1 + 2ξ)eβ(ξ−x)e− ξ
2 e− δξ

2 dξ

+
x(1+ε)∫
x

eβ(ξ−x)e− ξ
2 e− δξ

2 dξ

)

≤ 2C0

(
10ε

x∫
0

eβ(ξ−x)e−δξ dξ + εxeεβxe− x
2 e− δx

2

)

≤ 2εC0

( 10

β − δ
+ xe(εβ+ δ

2 − 1
2 )x

)
e−δx ≤ εC0Cδ,βe−δx . (5.14)

Therefore, combining (5.12), (5.13), and (5.14), and by choosing M > C0C1
(
1 + 1

δ
+ 1

β−δ
+ Cδ,β

)
, we obtain

|Tε,η[W ](x)| ≤ (ε + η)Me−δx (5.15)

for every W ∈ Xε,η .
We now show the continuity of Tε,η[W ]. Notice that, by using (5.11) and the bound on W in the definition of the 

space Xε,η, it is straightforward to obtain the simple bound

|Rε,η[W ](x)| ≤ C1(ε + η)e−δx + 4(ε + η)Me− x
2 e− δx

2 ≤ C2e
−δx (5.16)

for a numerical constant C2 > 0. Therefore for every pair of points x1 < x2 we have using this estimate, (A.3), (A.4), 
and (A.5),

|Tε,η[W ](x1) − Tε,η[W ](x2)| ≤
x2∫

x1

(
eξ |Q(ξ)| + eξ−x2 |G̃(x2, ξ)|

)
|Rε,η[W ](ξ)|dξ

+
x1∫

0

∣∣eξ−x1G̃(x1, ξ) − eξ−x2G̃(x2, ξ)
∣∣|Rε,η[W ](ξ)|dξ

≤ C0C2

x2∫
x1

(
1 + eβ(ξ−x2)

)
e−δξ dξ

+ C0C2|x1 − x2|
x1∫

0

(
eβ(ξ−x1) + eβ(ξ−x2)

)
e−δξ dξ

≤ 4C0C2|x1 − x2| .
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It follows that Tε,η[W ] ∈ C0([0, ∞)), and this information combined with the bound (5.15) proves that Tε,η[W ] ∈ Xε,η

for every W ∈ Xε,η.
We are left with the proof that Tε,η is a contraction in Xε,η, for ε and η small enough. As before it is convenient 

to separate the contributions of the two parts R1
ε,η[W ] and R2

ε,η[W ] of Rε,η[W ]. For the first, it is straightforward to 
obtain the bound

|R1
ε,η[W1](x) − R1

ε,η[W2](x)| ≤ ∣∣(W1(
x
2 (1 + ε))

)2 − (
W2(

x
2 (1 + ε))

)2∣∣
+ η

(
(e−x + W1(x))2 − (e−x + W2(x))2

)
≤ C3(ε + η)‖W1 − W2‖e−δx

for every W1, W2 ∈ Xε,η , for some constant C3 > 0 depending possibly only on M . By inserting this estimate in the 
definition (5.9) of Tε,η[W ] and arguing as in (5.12), we find

|T 1
ε,η[W1](x) − T 1

ε,η[W2](x)| ≤ (ε + η)C0C3

(1

δ
+ 1

β − δ

)
‖W1 − W2‖e−δx . (5.17)

We now consider the part of the operator involving R2
ε,η[W ]. By a change of variables and arguing as in (5.13) we 

have ∣∣∣∣
∞∫

x

eξQ(ξ)
(
R2

ε,η[W1](ξ) − R2
ε,η[W2](ξ)

)
dξ

∣∣∣∣
≤ 2

∞∫
x

∣∣∣eξQ(ξ) − 1
1+ε

e
ξ

1+ε Q(
ξ

1+ε
)

∣∣∣e− ξ
2
∣∣W1(

ξ
2 ) − W2(

ξ
2 )

∣∣dξ

+ 2

1 + ε

x(1+ε)∫
x

e
ξ

1+ε |Q(
ξ

1+ε
)|e− ξ

2
∣∣W1(

ξ
2 ) − W2(

ξ
2 )

∣∣dξ

≤ εC0C1‖W1 − W2‖e−δx . (5.18)

Similarly by the same estimates as in (5.14)∣∣∣∣
x∫

0

eξ−xG̃(x, ξ)
(
R2

ε,η[W1](ξ) − R2
ε,η[W2](ξ)

)
dξ

∣∣∣∣
≤ 2e−x

x∫
0

∣∣∣eξ G̃(x, ξ) − 1
1+ε

e
ξ

1+ε G̃(x,
ξ

1+ε
)

∣∣∣e− ξ
2
∣∣W1(

ξ
2 ) − W2(

ξ
2 )

∣∣dξ

+ 2e−x

1 + ε

x(1+ε)∫
x

e
ξ

1+ε |G̃(x,
ξ

1+ε
)|e− ξ

2
∣∣W1(

ξ
2 ) − W2(

ξ
2 )

∣∣dξ

≤ εC0Cδ,β‖W1 − W2‖e−δx . (5.19)

Combining (5.17), (5.18) and (5.19) we finally obtain

‖Tε,η[W1] − Tε,η[W2]‖ ≤ (ε + η)C‖W1 − W2‖ ,

for every W1, W2 ∈ Xε,η and for a constant C > 0 independent of ε and η. Therefore the map Tε,η is a contraction for 
ε and η sufficiently small. �
Remark 5.4 (Differentiability of W ). We can now check that the solution W(·; ε, η) constructed in Lemma 5.3 is 
continuously differentiable. Indeed, we can rewrite (5.7) in the following form:
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W(x; ε, η) = −
∞∫

0

eξQ(ξ)R[W ](ξ ; ε, η)dξ +
x∫

0

eξ−xG(x, ξ)R[W ](ξ ; ε, η)dξ

(notice that, in view of the bound (5.8) on W , the function R[W ] decays exponentially and the previous integrals are 
therefore well-defined quantities). By taking the derivative of the previous expression with respect to the variable x
we find, using that G is the fundamental solution to (A.1),

Wx(x; ε, η) = R[W ](x; ε, η) − 2

x∫
0

eξ−xG(x
2 , ξ)R[W ](ξ ; ε, η)dξ . (5.20)

From the definition (5.4) of R[W ] and the continuity of W and G it follows that the right-hand side in (5.20) is 
continuous in x. Therefore W(·; ε, η) ∈ C1([0, ∞)).

We can in addition obtain a bound on Wx as follows: it was shown along the proof of Lemma 5.3, using the estimate 
(5.8) on W , that

|R[W ](x; ε, η)| ≤ (ε + η)Ce−δx

for some constant C depending only on M (see (5.16)); in turn, inserting this estimate into (5.20) one finds, recalling 
the bounds on the function G proved in Lemma A.1,

|Wx(x; ε, η)| ≤ (ε + η)M1e
−δx ,

for a uniform constant M1 independent of ε and η (M1 depends ultimately on δ, M , and on the constants β and C0
appearing in Lemma A.1).

Lemma 5.5 (Implicit Function Theorem). There are η1 ∈ (0, η0) and ε1 ∈ (0, ε0) with the following property: for every 
η ∈ (0, η1) there exists a unique ε(η) ∈ (0, ε1) such that the solution W(·; ε(η), η) to (5.7) constructed in Lemma 5.3
satisfies

F(W(·; ε(η), η), ε(η), η) = 0 , (5.21)

where F is defined in (5.5).

Proof. Define the function f (ε, η) := F(W(·; ε, η), ε, η). The proof will follow by applying a one-side version of the 
Implicit Function Theorem (see Lemma 5.6 below) to the function f in a neighborhood of the point (ε, η) = (0, 0). 
Notice that f (0, 0) = 0, as W(·; 0, 0) ≡ 0. The main technical part in the proof consists therefore in proving that f is 
continuously differentiable in the two parameters.

Recall that by the construction in Lemma 5.3 and the subsequent Remark 5.4 the function W(·; ε, η) ∈ C1([0, ∞))

satisfies the equation (5.7), with R[W ] defined in (5.4), together with the estimates

|W(x; ε, η)| ≤ (ε + η)Me−δx , |Wx(x; ε, η)| ≤ (ε + η)M1e
−δx , (5.22)

where M, M1 > 1 and δ ∈ (0, β) are fixed constants and β is as in Lemma A.1. Along the proof we will denote by C
a uniform, positive constant depending possibly only on the fixed parameters M , M1, δ, β , but not on ε or η, which 
might change from line to line.

Step 1: Lipschitz continuity of W in ε and η. We first prove a uniform bound on the difference quotients of W in 
the variable ε. To this aim, we fix (ε, η) ∈ [0, ε1

2 ) × [0, η1
2 ), where ε1 < ε0 and η1 < η0 are to be chosen later. In 

this argument the variable η will always take a fixed value and therefore we will not indicate the dependence on η to 
lighten the notation. Fix also h0 > 0, and define the quantity

Sh0 := sup
h∈(h0,

ε1
2 )

sup
x>0

∣∣∣∣W(x; ε + h) − W(x; ε)
h

∣∣∣∣ +
∣∣∣∣Wx(x; ε + h) − Wx(x; ε)

h

∣∣∣∣ (5.23)

(which is finite in view of the bound (5.22)).
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We introduce to simplify the notation the function

ρ(x, ε) := R[W(·; ε)](x; ε) = e−x − e−x(1+ε) + 2e− x
2 W(x

2 ; ε) − 2e− x
2 (1+ε)W(x

2 (1 + ε); ε)
− (

W(x
2 (1 + ε); ε))2 + η

(
e−x + W(x; ε))2

, (5.24)

so that by (5.7)

|W(x; ε + h) − W(x; ε)|
h

≤
∞∫

x

eξ |Q(ξ)| |ρ(ξ, ε + h) − ρ(ξ, ε)|
h

dξ

+
x∫

0

eξ−x |G̃(x, ξ)| |ρ(ξ, ε + h) − ρ(ξ, ε)|
h

dξ .

(5.25)

The first step is to obtain a uniform bound for h0 < h < ε1
2 on the difference quotients of the function ρ with respect 

to the variable ε: we can write∣∣∣∣ρ(x, ε + h) − ρ(x, ε)

h

∣∣∣∣ ≤ |e−x(1+ε+h) − e−x(1+ε)|
h

+ 2e− x
2

h

∣∣∣W(x
2 ; ε + h) − e− x

2 (ε+h)W(x
2 (1 + ε + h); ε + h)

− W(x
2 ; ε) + e− x

2 εW(x
2 (1 + ε); ε)

∣∣∣
+ 1

h

∣∣∣(W(x
2 (1 + ε + h); ε + h)

)2 − (
W(x

2 (1 + ε); ε))2
∣∣∣

+ η

h

∣∣∣(e−x + W(x; ε + h)
)2 − (

e−x + W(x; ε))2
∣∣∣

=: A1 + A2 + A3 + A4 .

We now estimate separately each term Ai . For the first one we have (recall that δ < 1
2 )

A1 ≤ xe−(1+ε)x ≤ e−δx .

The term A2 can be written in the following form:

A2 ≤ 2e− x
2

h

∣∣∣∣e− x
2 (ε+h)

(
W(x

2 (1 + ε + h); ε + h) − W(x
2 (1 + ε); ε + h)

)
+ (

e− x
2 (ε+h) − e− x

2 ε
)
W(x

2 (1 + ε); ε + h)

+ (
e− x

2 ε − 1
)(

W(x
2 (1 + ε); ε + h) − W(x

2 (1 + ε); ε)
)

+
(
W(x

2 (1 + ε); ε + h) − W(x
2 ; ε + h) − W(x

2 (1 + ε); ε) + W(x
2 ; ε)

)∣∣∣∣
≤ e− x

2

(
(ε + h + η)M1xe− 1

2 δx + xe− x
2 ε(ε + h + η)Me− 1

2 δx + εxSh0

+ εx

h

1∫
0

∣∣Wx(
x
2 (1 + tε); ε + h) − Wx(

x
2 (1 + tε); ε)∣∣dt

)
≤ (ε1 + η1)C(1 + xSh0)e

− x
2

where we used in particular (5.22) and the definition of Sh0 . We now look at the term A3:
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A3 ≤ 2(ε + h + η)Me− 1
2 δx(1+ε)

∣∣W(x
2 (1 + ε + h); ε + h) − W(x

2 (1 + ε); ε)∣∣
h

≤ (ε1 + η1)
2MM1xe−δx + 2(ε1 + η1)MSh0e

− 1
2 δx

≤ (ε1 + η1)C
(
1 + Sh0

)
e− 1

2 δx .

Finally, for the term A4 we have

A4 ≤ 2η
(
e−x + (ε + h + η)Me−δx

) |W(x; ε + h) − W(x; ε)|
h

≤ (ε1 + η1)CSh0e
−δx .

By collecting all the previous bounds we find for all h0 < h < ε1
2∣∣∣∣ρ(x, ε + h) − ρ(x, ε)

h

∣∣∣∣ ≤ C
(

1 + (ε1 + η1)Sh0

)
e− 1

2 δx . (5.26)

Inserting this estimate in (5.25) and using also (A.3)–(A.4) we obtain

|W(x; ε + h) − W(x; ε)|
h

≤ C0C
(
1 + (ε1 + η1)Sh0

)( ∞∫
x

e− 1
2 δξ dξ +

x∫
0

eβ(ξ−x)e− 1
2 δξ dξ

)
≤ C

(
1 + (ε1 + η1)Sh0

)
e− 1

2 δx .

Similarly, using the expression (5.20) for the derivative of W we obtain

|Wx(x; ε + h) − Wx(x; ε)|
h

≤ |ρ(x, ε + h) − ρ(x, ε)|
h

+ 2

x∫
0

eξ−x |G(x
2 , ξ)| |ρ(ξ, ε + h) − ρ(ξ, ε)|

h
dξ

≤ C
(
1 + (ε1 + η1)Sh0

)
e− 1

2 δx .

Therefore, adding up these two inequalities, and taking the supremum over h ∈ (h0, 12ε1) and x > 0, we end up 
with the bound Sh0 ≤ C

(
1 + (ε1 + η1)Sh0

)
; in turn, by choosing ε1 and η1 small enough, this yields Sh0 ≤ C for a 

uniform constant C > 0 independent of ε, η, and h0. As h0 is arbitrary, we can conclude that W and Wx are uniformly 
Lipschitz continuous with respect to the variable ε for (x, ε, η) ∈ [0, ∞) ×[0, ε1

2 ) ×[0, η1
2 ). The proof of the Lipschitz 

continuity in the variable η can be proved by a similar argument.

Step 2: differentiability of W in ε and η. From the Lipschitz continuity it follows that W is differentiable almost 
everywhere in the domain [0, ∞) × [0, ε1

2 ) × [0, η1
2 ) with respect to the variables ε, η. We want to prove now the 

continuity of Wε and Wη. As before we present the argument only for Wε (the one for Wη being similar), and since η
takes always a fixed value we will not indicate the dependence on this variable to lighten the notation.

Notice that for all x > 0 and ε, ̄ε ∈ [0, ε1
2 ) we have the uniform estimates

|W(x; ε) − W(x; ε̄)| ≤ C|ε − ε̄|e− 1
2 δx , |Wx(x; ε) − Wx(x; ε̄)| ≤ C|ε − ε̄|e− 1

2 δx , (5.27)

which in turn yield the bound on the partial derivative

|Wε(x; ε)| ≤ Ce− 1
2 δx . (5.28)

For any two values ε, ̄ε ∈ [0, ε1
2 ) we define the quantity

Sε,ε̄ := sup
x>0

|Wε(x; ε) − Wε(x; ε̄)| .

We first differentiate the function ρ(x, ε), introduced in (5.24), with respect to ε: it is convenient to split its deriva-
tive into three parts,

ρε(x, ε) = ρ1
ε (x, ε) + ρ2

ε (x, ε) + ρ3
ε (x, ε) ,
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with

ρ1
ε (x, ε) := 2e− x

2 Wε(
x
2 ; ε) − 2e− x

2 (1+ε)Wε(
x
2 (1 + ε); ε) − 2W(x

2 (1 + ε); ε)Wε(
x
2 (1 + ε); ε) ,

ρ2
ε (x, ε) := xe−x(1+ε) + xe− x

2 (1+ε)W(x
2 (1 + ε); ε) − xe− x

2 (1+ε)Wx(
x
2 (1 + ε); ε)

− xW(x
2 (1 + ε); ε)Wx(

x
2 (1 + ε); ε) ,

ρ3
ε (x, ε) := 2η

(
e−x + W(x; ε))Wε(x; ε) .

Notice that in view of (5.22) and (5.28) we have a uniform bound |ρε(x, ε)| ≤ Ce− 1
2 δx . Therefore we can differentiate 

under the integral sign in the equation (5.7):

Wε(x; ε) =
3∑

i=1

(
−

∞∫
x

eξQ(ξ)ρi
ε(ξ, ε)dξ +

x∫
0

eξ−xG̃(x, ξ)ρi
ε(ξ, ε)dξ

)

=:
3∑

i=1

(
−Ai(x, ε) + Bi(x, ε)

)
.

(5.29)

The goal is now to obtain a bound on the difference |Wε(x; ε) − Wε(x; ̄ε)|, in order to show the continuity of Wε. 
Hence we proceed by considering each term in the sum (5.29).

By a change of variable we can write

A1(x, ε) = 2

∞∫
x

eξQ(ξ)e− ξ
2 Wε(

ξ
2 ; ε)dξ − 2

1 + ε

∞∫
x(1+ε)

e
ξ

1+ε Q(
ξ

1+ε
)e− ξ

2 Wε(
ξ
2 ; ε)dξ

− 2

1 + ε

∞∫
x(1+ε)

e
ξ

1+ε Q(
ξ

1+ε
)W(

ξ
2 ; ε)Wε(

ξ
2 ; ε)dξ

= 2

∞∫
x

(
eξQ(ξ) − e

ξ
1+ε

1 + ε
Q(

ξ
1+ε

)

)
e− ξ

2 Wε(
ξ
2 ; ε)dξ

+ 2

1 + ε

x(1+ε)∫
x

e
ξ

1+ε Q(
ξ

1+ε
)e− ξ

2 Wε(
ξ
2 ; ε)dξ

− 2

1 + ε

∞∫
x(1+ε)

e
ξ

1+ε Q(
ξ

1+ε
)W(

ξ
2 ; ε)Wε(

ξ
2 ; ε)dξ

=: a(x, ε) + b(x, ε) + c(x, ε).

In order to obtain an estimate for the difference |A1(x, ε) − A1(x, ̄ε)| we consider the three terms on the right-hand 
side of the previous equation separately. The following estimates are obtained by using the bound (5.28) and the 
Lipschitz continuity of the function Q (see (A.3)). For the first term we have

|a(x, ε) − a(x, ε̄)| ≤ 2

∞∫
x

∣∣∣∣ e
ξ

1+ε

1 + ε
Q(

ξ
1+ε

) − e
ξ

1+ε̄

1 + ε̄
Q(

ξ
1+ε̄

)

∣∣∣∣e− ξ
2 |Wε(

ξ
2 ; ε)|dξ

+ 2

∞∫
x

∣∣∣∣eξQ(ξ) − e
ξ

1+ε̄

1 + ε̄
Q(

ξ
1+ε̄

)

∣∣∣∣e− ξ
2
∣∣Wε(

ξ
2 ; ε) − Wε(

ξ
2 ; ε̄)∣∣dξ

≤ C|ε − ε̄|
∞∫

x

e− ξ
2 e− 1

4 δξ dξ + Cε̄Sε,ε̄

∞∫
x

e− ξ
2 dξ

≤ C|ε − ε̄| + Cε̄Sε,ε̄ .
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For the second term we obtain

|b(x, ε) − b(x, ε̄)| ≤
∣∣∣∣ 2

1 + ε

x(1+ε)∫
x

e
ξ

1+ε Q(
ξ

1+ε
)e− ξ

2

(
Wε(

ξ
2 ; ε) − Wε(

ξ
2 , ε̄)

)
dξ

∣∣∣∣
+

∣∣∣∣ 2

1 + ε

x(1+ε)∫
x

e
ξ

1+ε Q(
ξ

1+ε
)e− ξ

2 Wε(
ξ
2 ; ε̄)dξ

− 2

1 + ε̄

x(1+ε̄)∫
x

e
ξ

1+ε̄ Q(
ξ

1+ε̄
)e− ξ

2 Wε(
ξ
2 ; ε̄)dξ

∣∣∣∣
≤ CSε,ε̄

x(1+ε)∫
x

e− ξ
2 dξ + C|ε − ε̄| ≤ CεSε,ε̄ + C|ε − ε̄| .

For the third term we use also (5.22) and (5.27):

|c(x, ε) − c(x, ε̄)| ≤
∣∣∣∣ 2

1 + ε

∞∫
x(1+ε)

e
ξ

1+ε Q(
ξ

1+ε
)W(

ξ
2 ; ε)

(
Wε(

ξ
2 ; ε) − Wε(

ξ
2 ; ε̄)

)
dξ

∣∣∣∣
+

∣∣∣∣ 2

1 + ε

∞∫
x(1+ε)

e
ξ

1+ε Q(
ξ

1+ε
)W(

ξ
2 ; ε)Wε(

ξ
2 ; ε̄)dξ

− 2

1 + ε̄

∞∫
x(1+ε̄)

e
ξ

1+ε̄ Q(
ξ

1+ε̄
)W(

ξ
2 ; ε̄)Wε(

ξ
2 ; ε̄)dξ

∣∣∣∣
≤ C(ε + η)Sε,ε̄

∞∫
x(1+ε)

e− 1
2 δξ dξ + C|ε − ε̄| ≤ C(ε + η)Sε,ε̄ + C|ε − ε̄| .

Collecting all the previous estimates we get

|A1(x, ε) − A1(x, ε̄)| ≤ C(ε1 + η1)Sε,ε̄ + C|ε − ε̄| . (5.30)

Arguing in a completely similar way, using in particular the Lipschitz continuity of the function G̃ (see (A.4)), one 
can prove that

|B1(x, ε) − B1(x, ε̄)| ≤ C(ε1 + η1)Sε,ε̄ + C|ε − ε̄| . (5.31)

Observe that, as the functions W and Wx are continuous in both variables (x, ε), the second term ρ2
ε is continuous 

in ε; this information, combined with the bound |ρ2
ε (x, ε)| ≤ Ce− 1

2 δx , yields by Lebesgue’s Dominated Convergence 
Theorem

|A2(x, ε) − A2(x, ε̄)| ≤ ω(ε − ε̄) , |B2(x, ε) − B2(x, ε̄)| ≤ ω(ε − ε̄) , (5.32)

where ω(ε − ε̄) → 0 as ε − ε̄ → 0 (uniformly with respect to x).
For the terms containing ρ3

ε we have by using the bounds (5.27)–(5.28)

|A3(x, ε) − A3(x, ε̄)| ≤ 2η

∣∣∣∣
∞∫

x

eξQ(ξ)
(
W(ξ ; ε) − W(ξ ; ε̄))Wε(ξ ; ε)dξ

∣∣∣∣
+ 2η

∣∣∣∣
∞∫

εξQ(ξ)
(
e−ξ + W(ξ ; ε̄))(Wε(ξ ; ε) − Wε(ξ ; ε̄))dξ

∣∣∣∣

x
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≤ Cη|ε − ε̄|
∞∫

x

e−δξ dξ + CηSε,ε̄

∞∫
x

e−δξ dξ

≤ Cη|ε − ε̄| + CηSε,ε̄ , (5.33)

and similarly for B3

|B3(x, ε) − B3(x, ε̄)| ≤ Cη|ε − ε̄| + CηSε,ε̄ . (5.34)

By collecting (5.30)–(5.34) and inserting the bounds in (5.29) we have

|Wε(x, ε) − Wε(x, ε̄)| ≤ C(ε1 + η1)Sε,ε̄ + C|ε − ε̄| + 2ω(ε − ε̄) .

Therefore taking the supremum over x > 0 and choosing smaller ε1, η1 if necessary we eventually obtain

Sε,ε̄ ≤ C
(
|ε − ε̄| + ω(ε − ε̄)

)
for all ε, ε̄ ∈ [0, ε1

2 ).

This yields the continuity with respect to the variable ε of the partial derivative Wε. In a similar fashion one can prove 
the continuity of Wε with respect to η, and also the continuity of Wη; we omit the details.

Step 3: differentiability of f . Recall the definition (5.5) of F , the function f (ε, η) can be written as follows:

f (ε, η) = F(W(·; ε, η), ε, η)

=
∞∫

0

eξQ(ξ)
(
e−ξ − e−ξ(1+ε) + 2e− ξ

2 W(
ξ
2 ; ε, η) − 2e− ξ

2 (1+ε)W(
ξ
2 (1 + ε); ε, η)

− (
W(

ξ
2 (1 + ε); ε, η)

)2 + η
(
e−ξ + W(ξ ; ε, η)

)2
)

dξ .

Since W ∈ C1([0, ∞) × [0, ε1
2 ) × [0, η1

2 )) and W and its partial derivatives decay exponentially as x → ∞, we 
can differentiate under the integral sign; the resulting expression is continuous in (ε, η), and we conclude that f
is continuously differentiable in [0, ε1

2 ) × [0, η1
2 ).

Step 4: Implicit Function Theorem. To conclude the proof it only remains to show the assumption in Lemma 5.6 on 
the sign of the partial derivatives of f . We find by a straightforward computation, recalling that W(·; 0, 0) ≡ 0,

∂f

∂ε
(0,0) =

∞∫
0

ξQ(ξ)dξ .

This integral has already been encountered in the proof of Proposition 3.5, where it was shown that it is strictly 
positive: see (3.18). For the partial derivative with respect to the variable η we find similarly

∂f

∂η
(0,0) =

∞∫
0

e−ξQ(ξ)dξ .

To determine the sign of this integral, recall that the function Q was defined in (A.2) as an alternating series Q(ξ) =∑∞
n=0(−1)nane

−2nξ , an > 0, with the sequence of the coefficients (an)n strictly decreasing starting from n = 2. We 
therefore have

∂f

∂η
(0,0) =

∞∑
n=0

(−1)nan

∞∫
0

e−(1+2n)ξ dξ = 1

2
+

∞∑
n=1

(−1)n22n

(1 + 2n)
∏n

j=1(2
j − 1)

.

We can directly check that the previous quantity is strictly negative: one can just compute the contribution of the 
first five term, the rest being negative thanks to the monotonicity of the coefficients. Therefore ∂f

∂η
< 0 and all the 

assumptions needed to apply Lemma 5.6 are satisfied. �
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Lemma 5.6 (One-sided Implicit Function Theorem). Let f : [0, x0) × [0, y0) → R be continuously differentiable and 
assume that

f (0,0) = 0,
∂f

∂y
(0,0) > 0,

∂f

∂x
(0,0) < 0 .

Then there exist x1 ∈ (0, x0) and y1 ∈ (0, y0) and a C1-map g : [0, x1) → [0, y1) such that g(0) = 0 and

f (x, y) = 0 with (x, y) ∈ [0, x1) × [0, y1) if and only if y = g(x). (5.35)

Proof. This is just a small variation of the proof of the standard Implicit Function Theorem. The function y �→ f (0, y)

is strictly increasing in a neighborhood of zero and takes the value zero at y = 0, therefore f (0, y1) > 0 if y1 > 0 is 
small enough. By continuity we can find δ1 > 0 such that f (x, y1) > 0 for every x ∈ (0, δ1). The function x �→ f (x, 0)

is strictly decreasing in a neighborhood of zero and takes the value zero at x = 0, therefore we can find δ2 > 0 such 
that f (x, 0) < 0 for every x ∈ (0, δ2). Let x1 := min{δ1, δ2}. By reducing x1 and y1 if necessary we can assume that 
∂f
∂y

> 0 in the whole square [0, x1] × [0, y1]. Then

f (x,0) < 0, f (x, y1) > 0,
∂f

∂y
(x, y) > 0

for every (x, y) ∈ (0, x1) × (0, y1). By continuity and the intermediate value theorem we obtain the existence of a 
function g satisfying (5.35). The differentiability of g can be shown as in the proof of the standard Implicit Function 
Theorem. �
Proof of Theorem 5.1. For every η ∈ (0, η1) we have obtained in Lemma 5.5 a function W(x; ε(η), η) satisfying the 
integral equation (5.7) together with the condition (5.21). Therefore by the construction discussed at the beginning 
of this section we have that the function h(x) = e−x + W(x; ε(η), η) solves the starting equation (5.1) for the values 
(ε(η), η) of the two parameters, and thanks to (5.8) it decays exponentially at infinity:

|h(x)| ≤ Ce−δx . (5.36)

It only remains to check the positivity of this solution. Assume by contradiction that h(x0) < 0 for some x0 > 0. It 
is easily checked using the equation that h has to remain negative also for larger values of x. Then for x > x0

h′(x) = −(
h
(

x
2 (1 + ε)

))2 + η
(
h(x)

)2 ≤ η
(
h(x)

)2
,

that is, ( 1
h(x)

)′ ≥ −η. By integration we end up with the inequality 1
h(x)

≥ 1
h(x0)

− η(x − x0), or equivalently (since 
h(x) < 0)

h(x) ≤ 1
1

h(x0)
− η(x − x0)

for x > x0.

But this is incompatible with (5.36) and therefore h remains positive for all x > 0. �
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Appendix A. Fundamental solution to a linear delay equation

We construct in this section the fundamental solution to the delay equation

ϕ′(x) = ϕ(x) − 2ϕ(x/2) for x ∈ (0,∞), ϕ(0) = 0,

which appears in the previous sections as the linearization of (2.2) in the regime γ → ∞.

Lemma A.1 (Fundamental solution). The solution G(x, ξ) solution to the linear delay equation, with a point source 
in ξ > 0,

ϕ′(x) = ϕ(x) − 2ϕ(x/2) + δ(x − ξ) for x ∈ (0,∞), ϕ(0) = 0, (A.1)

satisfies G(x, ξ) = 0 for x < ξ , and has the representation

G(x, ξ) = exQ(ξ) + G̃(x, ξ) , with Q(ξ) := e−ξ +
∞∑

n=1

(−1)n22ne−2nξ∏n
j=1(2

j − 1)
, (A.2)

for x > ξ . The function Q satisfies the bounds, for every ξ > 0 and ξ2 > ξ1 > 0,

|Q(ξ)| ≤ C0e
−ξ , |eξ1Q(ξ1) − eξ2Q(ξ2)| ≤ C0e

−ξ1 |ξ1 − ξ2| . (A.3)

Moreover for every β ∈ (0, 12 ), x > ξ and x > ξ2 > ξ1 > 0 the function G̃ satisfies the bounds

|G̃(x, ξ)| ≤ C0e
(1−β)(x−ξ) , |G̃(x, ξ1) − G̃(x, ξ2)| ≤ C0|ξ1 − ξ2|e(1−β)(x−ξ1) , (A.4)

and finally for every x2 > x1 > ξ

|G̃(x1, ξ) − G̃(x2, ξ)| ≤ C0|x1 − x2|e(1−β)(x2−ξ) . (A.5)

In all the previous estimates C0 > 0 is a uniform constant depending only on β .

Proof. In order to prove the lemma, we will solve (A.1) explicitly via Laplace transform; in a second step we will 
obtain the representation (A.2) for G by using the inverse Laplace transform and contour integration. Finally we will 
prove the estimates in the statement.

Step 1. By taking the Laplace transform �(z) := ∫ ∞
0 ϕ(x)e−zx dx the equation (A.1) becomes

(z − 1)�(z) = −4�(2z) + e−zξ . (A.6)

We first construct the homogeneous solution �h to (A.6) without the source term, that is, (z − 1)�h(z) = −4�h(2z). 
By the rescaling �h(z) = zα�(z) with α = iπ

ln 2 − 2 (that is, 2α = − 1
4 ), we reduce the problem to the simpler equation

�(2z) = (z − 1)�(z) , (A.7)

whose solution can be constructed as a power series �(z) = ∑∞
n=−∞ anz

n. Indeed, the coefficients obey the recurrence 
relation an−1 = (2n + 1)an, which gives up to a multiplicative constant (we choose a0 = 1)

�(z) = 1 +
∞∑

m=1

zm∏m
k=1(2

k + 1)
+

∞∑
m=1

(m−1∏
k=0

(2−k + 1)
)
z−m .

The series is convergent for |z| > 1. Notice also that �(z) = �(2z)
z−1 and hence � has a simple pole at z = 1, since � is 

analytic in a neighborhood of z = 2; it also follows that all the points z = 2−n, n ∈N, are poles of �(z).
We obtain the homogeneous solution �h to (A.6) by multiplying � by zα . We can now write the full solution to 

the problem (A.6), including the source e−zξ , in terms of �h: indeed, by setting �(z) = �h(z)P (z) = zα�(z)P (z)

and plugging this ansatz into the equation (A.6), we find (recall that 2α = − 1
4 by the choice of α)

(z − 1)zα�(z)P (z) = zα�(2z)P (2z) + e−zξ ,



M. Bonacini et al. / Ann. I. H. Poincaré – AN 36 (2019) 705–744 741
Fig. 4. The curve �R used for contour integration.

or equivalently, using (A.7),

P(z) = P(2z) + e−zξ

zα(z − 1)�(z)
.

By developing this relation and observing that P tends to zero as |z| → ∞ we find

P(z) =
∞∑

n=0

e−2nzξ

(2nz − 1)(2nz)α�(2nz)
.

In turn, using the recurrence relation �(2nz) = ∏n−1
k=0(2

kz − 1)�(z), we obtain the following representation for the 
solution � to (A.6):

�(z) = zα�(z)P (z) = �(z)

∞∑
n=0

e−2nzξ

(2nz − 1)2nα�(2nz)

=
∞∑

n=0

2−nαe−2nzξ∏n
k=0(2

kz − 1)
=

∞∑
n=0

(−1)n22ne−2nzξ∏n
k=0(2

kz − 1)
.

(A.8)

Step 2. We now use the inversion formula for the Laplace transform to obtain an expression for the solution to (A.1). 
Observe that the function � is well-defined for Re(z) > 1 and the series in (A.8) is uniformly convergent in {Re(z) ≥
1 + ε} for every ε > 0, therefore we have

G(x, ξ) = 1

2πi

L+i∞∫
L−i∞

ezx�(z)dz = 1

2πi

∞∑
n=0

L+i∞∫
L−i∞

(−1)n22ne(x−2nξ)z∏n
k=0(2

kz − 1)
dz , (A.9)

where the integral is on the vertical line {Re(z) = L}, and L is any real number larger than 1 (the integral here has to be 
interpreted in the sense of principal values, that is as limR→∞

∫ L+iR

L−iR
exz�(z) dz, where the limit is in the L2-sense). 

It is a standard exercise using contour integration on the right of the vertical line to show that G(x, ξ) = 0 for every 
x < ξ .

In order to obtain the representation (A.2) for x > ξ , we “move” the vertical line from the position L > 1 to a new 
position 1

2 < L̃ < 1 by means of contour integration; more precisely, we integrate along the curve �R in the complex 
plane as in Fig. 4, where R > 0 will be sent to infinity. The region enclosed by the curve contains only one simple 
pole at the point z = 1. Notice that the integrals on the horizontal segments σR and σ̃R vanish as R → ∞: indeed 
(exchanging the sum and the integral, since the series is uniformly convergent on σR)
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∣∣∣∣ 1

2πi

∫
σR

∞∑
n=0

(−1)n22ne(x−2nξ)z∏n
k=0(2

kz − 1)
dz

∣∣∣∣ =
∣∣∣∣ 1

2πi

∞∑
n=0

(−1)n22n∏n
k=0 2k

L̃∫
L

e(x−2nξ)(t+iR)∏n
k=0(t + iR − 2−k)

dt

∣∣∣∣
≤ 1

2π

∞∑
n=0

22n

2
n(n+1)

2

L∫
L̃

e(x−ξ)t

Rn+1 dt → 0 as R → ∞ ,

and similarly for the integral on σ̃R . We therefore find using Cauchy’s residual theorem

G(x, ξ) = 1

2πi

∞∑
n=0

L+i∞∫
L−i∞

(−1)n22ne(x−2nξ)z∏n
k=0 2k

∏n
k=0(z − 2−k)

dz

=
∞∑

n=0

(−1)n22n∏n
k=0 2k

Res

(
e(x−2nξ)z∏n

j=0(z − 2−j )
; z = 1

)
+ G̃(x, ξ)

= ex−ξ +
∞∑

n=1

(−1)n22n∏n
j=1 2j

e(x−2nξ)∏n
j=1(1 − 2−j )

+ G̃(x, ξ)

= Q(ξ)ex + G̃(x, ξ) ,

where the function Q is as in the statement and the remainder G̃(x, ξ) is given by

G̃(x, ξ) = 1

2πi

∞∑
n=0

L̃+i∞∫
L̃−i∞

(−1)n22ne(x−2nξ)z∏n
j=0 2j

∏n
j=0(z − 2−j )

dz . (A.10)

Therefore the function G(x, ξ) defined in (A.2) is the sought solution to (A.1). The bounds (A.3) for Q follow directly 
by its explicit expression; in particular, for the second one we have

|eξ1Q(ξ1) − eξ2Q(ξ2)| =
∞∑

n=1

22n∏n
j=1(2

j − 1)

∣∣e(1−2n)ξ1 − e(1−2n)ξ2
∣∣

≤ e−ξ1 |ξ2 − ξ1|
∞∑

n=1

22n(2n − 1)∏n
j=1(2

j − 1)
≤ C0e

−ξ1 |ξ2 − ξ1| ,

since the series is convergent.

Step 3. We now turn to the proof of the estimates (A.4)–(A.5) involving G̃. First notice that for x > ξ the sum (A.10)
defining G̃ actually starts from n = 1: indeed, for the term with n = 0 we have

1

2πi

L̃+i∞∫
L̃−i∞

e(x−ξ)z

z − 1
dz = 0 ,

as follows by a standard computation using contour integration on a half-circle on the left of the vertical line (observe 
that there are no poles inside the region of integration), and sending its radius to infinity. Therefore

G̃(x, ξ) =
∞∑

n=1

(−1)n22n

2
n(n+1)

2

1

2πi

L̃+i∞∫
˜

e(x−2nξ)z∏n
j=0(z − 2−j )

dz . (A.11)
L−i∞



M. Bonacini et al. / Ann. I. H. Poincaré – AN 36 (2019) 705–744 743
By using the expression (A.11) it is straightforward to obtain the first bound in (A.4), with β = 1 − L̃:

|G̃(x, ξ)| ≤ eL̃(x−ξ)

2π

∞∑
n=1

22n

2
n(n+1)

2

∞∫
−∞

dt∏n
j=0 |L̃ + it − 2−j |

≤ eL̃(x−ξ)

2π

∞∑
n=1

22n

2
n(n+1)

2

∞∫
−∞

dt(
(L̃ − 1)2 + t2

) 1
2
(
(L̃ − 1

2 )2 + t2
) n

2

≤ C0e
L̃(x−ξ) .

For the second bound in (A.4), we have to isolate the term with n = 1 in the expression (A.11) of G̃. By contour 
integration on a large half-circle on the right or on the left of the vertical line {Re(z) = L̃} (depending on whether 
x < 2ξ or x > 2ξ ), one can show that

− 1

2πi

L̃+i∞∫
L̃−i∞

2e(x−2ξ)z

(z − 1)(z − 1
2 )

dz =
{

4ex−2ξ if ξ < x < 2ξ,

4e
1
2 x−ξ if x > 2ξ.

(A.12)

By using this formula it is straightforward to check that for every x > ξ2 > ξ1 > 0

∣∣∣∣ 1

2πi

L̃+i∞∫
L̃−i∞

2e(x−2ξ1)z

(z − 1)(z − 1
2 )

dz − 1

2πi

L̃+i∞∫
L̃−i∞

2e(x−2ξ2)z

(z − 1)(z − 1
2 )

dz

∣∣∣∣ ≤ 8|ξ1 − ξ2|eL̃(x−ξ1) .

For all the other terms in the series (A.11) we have instead

∣∣∣∣ ∞∑
n=2

(−1)n22n

2
n(n+1)

2

1

2πi

L̃+i∞∫
L̃−i∞

ezx
(
e−2nξ1z − e−2nξ2z

)∏n
j=0(z − 2−j )

dz

∣∣∣∣
≤ eL̃x

2π

∞∑
n=2

22n

2
n(n+1)

2

∞∫
−∞

e−2nL̃ξ1 |e2n(ξ1−ξ2)(L̃+it) − 1|∏n
j=0 |L̃ + it − 2−j | dt

≤ eL̃(x−ξ1)|ξ1 − ξ2|
2π

∞∑
n=2

23n

2
n(n+1)

2

∞∫
−∞

(
L̃2 + t2

) 1
2(

(L̃ − 1)2 + t2
) 1

2
(
(L̃ − 1

2 )2 + t2
) n

2

dt

≤ eL̃(x−ξ1)|ξ1 − ξ2|
2π

∞∑
n=2

23n

2
n(n+1)

2

∞∫
−∞

2 dt(
(L̃ − 1

2 )2 + t2
) n

2
≤ C0|ξ1 − ξ2|eL̃(x−ξ1)

for a constant C0 depending only on the choice of L̃. This completes the proof of the second inequality in (A.4). 
Finally, the bound (A.5) follows by an analogous argument. �
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