In this paper, we consider the asymptotic behavior of the fractional mean curvature when . Moreover, we deal with the behavior of s-minimal surfaces when the fractional parameter is small, in a bounded and connected open set with boundary . We classify the behavior of s-minimal surfaces with respect to the fixed exterior data (i.e. the s-minimal set fixed outside of Ω). So, for s small and depending on the data at infinity, the s-minimal set can be either empty in Ω, fill all Ω, or possibly develop a wildly oscillating boundary.
Also, we prove the continuity of the fractional mean curvature in all variables, for . Using this, we see that as the parameter s varies, the fractional mean curvature may change sign.
Mots-clés : Nonlocal minimal surfaces, Stickiness phenomena, Loss of regularity, Strongly nonlocal regime
@article{AIHPC_2019__36_3_655_0, author = {Bucur, Claudia and Lombardini, Luca and Valdinoci, Enrico}, title = {Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {655--703}, publisher = {Elsevier}, volume = {36}, number = {3}, year = {2019}, doi = {10.1016/j.anihpc.2018.08.003}, mrnumber = {3926519}, zbl = {1411.49026}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.08.003/} }
TY - JOUR AU - Bucur, Claudia AU - Lombardini, Luca AU - Valdinoci, Enrico TI - Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 655 EP - 703 VL - 36 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.08.003/ DO - 10.1016/j.anihpc.2018.08.003 LA - en ID - AIHPC_2019__36_3_655_0 ER -
%0 Journal Article %A Bucur, Claudia %A Lombardini, Luca %A Valdinoci, Enrico %T Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 655-703 %V 36 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.08.003/ %R 10.1016/j.anihpc.2018.08.003 %G en %F AIHPC_2019__36_3_655_0
Bucur, Claudia; Lombardini, Luca; Valdinoci, Enrico. Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 655-703. doi : 10.1016/j.anihpc.2018.08.003. http://www.numdam.org/articles/10.1016/j.anihpc.2018.08.003/
[1] Large S-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5555–5607 | MR | Zbl
[2] A notion of nonlocal curvature, Numer. Funct. Anal. Optim., Volume 35 (2014) no. 7–9, pp. 793–815 | MR | Zbl
[3] Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, Papers from the Summer School held in Pisa, September 1996, Springer-Verlag, Berlin, 2000 | MR | Zbl
[4] Gamma-convergence of nonlocal perimeter functionals, Manuscr. Math., Volume 134 (2011) no. 3–4, pp. 377–403 | MR | Zbl
[5] Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 13 (2014) no. 3, pp. 609–639 | MR | Zbl
[6] Nonlocal Diffusion and Applications, Lect. Notes Unione Mat. Ital., vol. 20, Springer/Unione Matematica Italiana, Cham/Bologna, 2016 | DOI | MR
[7] Obstacle-type problems for minimal surfaces, Commun. Partial Differ. Equ., Volume 41 (2016) no. 8, pp. 1303–1323 | MR | Zbl
[8] Nonlocal minimal surfaces, Commun. Pure Appl. Math., Volume 63 (2010) no. 9, pp. 1111–1144 | MR | Zbl
[9] Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differ. Equ., Volume 41 (2011) no. 1–2, pp. 203–240 | MR | Zbl
[10] Regularity properties of nonlocal minimal surfaces via limiting arguments, Adv. Math., Volume 248 (2013), pp. 843–871 | MR | Zbl
[11] On the variation of the fractional mean curvature under the effect of perturbations, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5769–5786 | MR | Zbl
[12] On an open question about functions of bounded variation, Calc. Var. Partial Differ. Equ., Volume 15 (2002) no. 4, pp. 519–527 | MR | Zbl
[13] Asymptotics of the -perimeter as , Discrete Contin. Dyn. Syst., Volume 33 (2013) no. 7, pp. 2777–2790 | MR | Zbl
[14] Graph properties for nonlocal minimal surfaces, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 4 (Art. 86, 25) | MR | Zbl
[15] Boundary behavior of nonlocal minimal surfaces, J. Funct. Anal., Volume 272 (2017) no. 5, pp. 1791–1851 | MR | Zbl
[16] Nonlocal minimal surfaces: interior regularity, quantitative estimates and boundary stickiness, Recent Developments in the Nonlocal Theory, De Gruyter Open, 2018, pp. 165–209 (chapter 4) | MR
[17] Boundary blow up solutions for fractional elliptic equations, Asymptot. Anal., Volume 78 (2012) no. 3, pp. 123–144 | MR | Zbl
[18] Regularity and Bernstein-type results for nonlocal minimal surfaces, J. Reine Angew. Math., Volume 729 (2017), pp. 263–273 | MR | Zbl
[19] Elliptic Partial Differential Equations of Second Order, Class. Math., Springer-Verlag, Berlin, 2001 (reprint of the 1998 edition) | DOI | MR
[20] Fractional perimeter and nonlocal minimal surfaces, 2015 (arXiv preprint) | arXiv
[21] Approximation of sets of finite fractional perimeter by smooth sets and comparison of local and global s-minimal surfaces, Interfaces Free Bound., Volume 20 (2018) no. 2, pp. 261–296 | MR | Zbl
[22] Fractional perimeters from a fractal perspective, Adv. Nonlinear Stud. (2018) (arXiv preprint in press) | arXiv | DOI | MR | Zbl
[23] The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9), Volume 101 (2014) no. 3, pp. 275–302 | MR | Zbl
[24] The Dirichlet problem for nonlocal operators with singular kernels: convex and nonconvex domains, Adv. Math., Volume 288 (2016), pp. 732–790 | MR | Zbl
[25] Regularity of nonlocal minimal cones in dimension 2, Calc. Var. Partial Differ. Equ., Volume 48 (2013) no. 1–2, pp. 33–39 | MR | Zbl
Cité par Sources :