Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 655-703.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper, we consider the asymptotic behavior of the fractional mean curvature when s0+. Moreover, we deal with the behavior of s-minimal surfaces when the fractional parameter s(0,1) is small, in a bounded and connected open set with C2 boundary ΩRn. We classify the behavior of s-minimal surfaces with respect to the fixed exterior data (i.e. the s-minimal set fixed outside of Ω). So, for s small and depending on the data at infinity, the s-minimal set can be either empty in Ω, fill all Ω, or possibly develop a wildly oscillating boundary.

Also, we prove the continuity of the fractional mean curvature in all variables, for s[0,1]. Using this, we see that as the parameter s varies, the fractional mean curvature may change sign.

DOI : 10.1016/j.anihpc.2018.08.003
Classification : 49Q05, 35R11, 58E12
Mots-clés : Nonlocal minimal surfaces, Stickiness phenomena, Loss of regularity, Strongly nonlocal regime
Bucur, Claudia 1 ; Lombardini, Luca 2, 3, 4 ; Valdinoci, Enrico 2, 4, 5

1 School of Mathematics and Statistics, The University of Melbourne, 813 Swanston Street, Parkville, VIC 3010, Australia
2 Dipartimento di Matematica, Università degli Studi di Milano, Via Cesare Saldini 50, 20133 Milano, Italy
3 Faculté des Sciences, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens CEDEX 1, France
4 Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
5 Istituto di Matematica Applicata e Tecnologie Informatiche, Consiglio Nazionale delle Ricerche, Via Ferrata 1, 27100 Pavia, Italy
@article{AIHPC_2019__36_3_655_0,
     author = {Bucur, Claudia and Lombardini, Luca and Valdinoci, Enrico},
     title = {Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {655--703},
     publisher = {Elsevier},
     volume = {36},
     number = {3},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.08.003},
     mrnumber = {3926519},
     zbl = {1411.49026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.08.003/}
}
TY  - JOUR
AU  - Bucur, Claudia
AU  - Lombardini, Luca
AU  - Valdinoci, Enrico
TI  - Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 655
EP  - 703
VL  - 36
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.08.003/
DO  - 10.1016/j.anihpc.2018.08.003
LA  - en
ID  - AIHPC_2019__36_3_655_0
ER  - 
%0 Journal Article
%A Bucur, Claudia
%A Lombardini, Luca
%A Valdinoci, Enrico
%T Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 655-703
%V 36
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.08.003/
%R 10.1016/j.anihpc.2018.08.003
%G en
%F AIHPC_2019__36_3_655_0
Bucur, Claudia; Lombardini, Luca; Valdinoci, Enrico. Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 655-703. doi : 10.1016/j.anihpc.2018.08.003. http://www.numdam.org/articles/10.1016/j.anihpc.2018.08.003/

[1] Abatangelo, Nicola Large S-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5555–5607 | MR | Zbl

[2] Abatangelo, Nicola; Valdinoci, Enrico A notion of nonlocal curvature, Numer. Funct. Anal. Optim., Volume 35 (2014) no. 7–9, pp. 793–815 | MR | Zbl

[3] Ambrosio, Luigi; Dancer, Norman; Buttazzo, G.; Marino, A.; Murthy, M.K.V. Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, Papers from the Summer School held in Pisa, September 1996, Springer-Verlag, Berlin, 2000 | MR | Zbl

[4] Ambrosio, Luigi; De Philippis, Guido; Martinazzi, Luca Gamma-convergence of nonlocal perimeter functionals, Manuscr. Math., Volume 134 (2011) no. 3–4, pp. 377–403 | MR | Zbl

[5] Barrios, Begoña; Figalli, Alessio; Valdinoci, Enrico Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 13 (2014) no. 3, pp. 609–639 | MR | Zbl

[6] Bucur, Claudia; Valdinoci, Enrico Nonlocal Diffusion and Applications, Lect. Notes Unione Mat. Ital., vol. 20, Springer/Unione Matematica Italiana, Cham/Bologna, 2016 | DOI | MR

[7] Caffarelli, Luis; De Silva, Daniela; Savin, Ovidiu Obstacle-type problems for minimal surfaces, Commun. Partial Differ. Equ., Volume 41 (2016) no. 8, pp. 1303–1323 | MR | Zbl

[8] Caffarelli, Luis; Roquejoffre, Jean-Michel; Savin, Ovidiu Nonlocal minimal surfaces, Commun. Pure Appl. Math., Volume 63 (2010) no. 9, pp. 1111–1144 | MR | Zbl

[9] Caffarelli, Luis; Valdinoci, Enrico Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differ. Equ., Volume 41 (2011) no. 1–2, pp. 203–240 | MR | Zbl

[10] Caffarelli, Luis; Valdinoci, Enrico Regularity properties of nonlocal minimal surfaces via limiting arguments, Adv. Math., Volume 248 (2013), pp. 843–871 | MR | Zbl

[11] Cozzi, Matteo On the variation of the fractional mean curvature under the effect of C1,α perturbations, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5769–5786 | MR | Zbl

[12] Dávila, Juan On an open question about functions of bounded variation, Calc. Var. Partial Differ. Equ., Volume 15 (2002) no. 4, pp. 519–527 | MR | Zbl

[13] Dipierro, Serena; Figalli, Alessio; Palatucci, Giampiero; Valdinoci, Enrico Asymptotics of the s -perimeter as s0 , Discrete Contin. Dyn. Syst., Volume 33 (2013) no. 7, pp. 2777–2790 | MR | Zbl

[14] Dipierro, Serena; Savin, Ovidiu; Valdinoci, Enrico Graph properties for nonlocal minimal surfaces, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 4 (Art. 86, 25) | MR | Zbl

[15] Dipierro, Serena; Savin, Ovidiu; Valdinoci, Enrico Boundary behavior of nonlocal minimal surfaces, J. Funct. Anal., Volume 272 (2017) no. 5, pp. 1791–1851 | MR | Zbl

[16] Dipierro, Serena; Valdinoci, Enrico; Palatucci, Giampiero; Kuusi, Tuomo Nonlocal minimal surfaces: interior regularity, quantitative estimates and boundary stickiness, Recent Developments in the Nonlocal Theory, De Gruyter Open, 2018, pp. 165–209 (chapter 4) | MR

[17] Felmer, Patricio; Quaas, Alexander Boundary blow up solutions for fractional elliptic equations, Asymptot. Anal., Volume 78 (2012) no. 3, pp. 123–144 | MR | Zbl

[18] Figalli, Alessio; Valdinoci, Enrico Regularity and Bernstein-type results for nonlocal minimal surfaces, J. Reine Angew. Math., Volume 729 (2017), pp. 263–273 | MR | Zbl

[19] Gilbarg, David; Trudinger, Neil S. Elliptic Partial Differential Equations of Second Order, Class. Math., Springer-Verlag, Berlin, 2001 (reprint of the 1998 edition) | DOI | MR

[20] Lombardini, Luca Fractional perimeter and nonlocal minimal surfaces, 2015 (arXiv preprint) | arXiv

[21] Lombardini, Luca Approximation of sets of finite fractional perimeter by smooth sets and comparison of local and global s-minimal surfaces, Interfaces Free Bound., Volume 20 (2018) no. 2, pp. 261–296 | MR | Zbl

[22] Lombardini, Luca Fractional perimeters from a fractal perspective, Adv. Nonlinear Stud. (2018) (arXiv preprint in press) | arXiv | DOI | MR | Zbl

[23] Ros-Oton, Xavier; Serra, Joaquim The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9), Volume 101 (2014) no. 3, pp. 275–302 | MR | Zbl

[24] Ros-Oton, Xavier; Valdinoci, Enrico The Dirichlet problem for nonlocal operators with singular kernels: convex and nonconvex domains, Adv. Math., Volume 288 (2016), pp. 732–790 | MR | Zbl

[25] Savin, Ovidiu; Valdinoci, Enrico Regularity of nonlocal minimal cones in dimension 2, Calc. Var. Partial Differ. Equ., Volume 48 (2013) no. 1–2, pp. 33–39 | MR | Zbl

Cité par Sources :