We prove that any 3-dimensional hyperbolic end with particles (cone singularities along infinite curves of angles less than π) admits a unique foliation by constant Gauss curvature surfaces. Using a form of duality between hyperbolic ends with particles and convex globally hyperbolic maximal (GHM) de Sitter spacetime with particles, it follows that any 3-dimensional convex GHM de Sitter spacetime with particles also admits a unique foliation by constant Gauss curvature surfaces. We prove that the grafting map from the product of Teichmüller space with the space of measured laminations to the space of complex projective structures is a homeomorphism for surfaces with cone singularities of angles less than π, as well as an analogue when grafting is replaced by “smooth grafting”.
@article{AIHPC_2019__36_1_181_0, author = {Chen, Qiyu and Schlenker, Jean-Marc}, title = {Hyperbolic ends with particles and grafting on singular surfaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {181--216}, publisher = {Elsevier}, volume = {36}, number = {1}, year = {2019}, doi = {10.1016/j.anihpc.2018.05.001}, mrnumber = {3906870}, zbl = {1408.83030}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.05.001/} }
TY - JOUR AU - Chen, Qiyu AU - Schlenker, Jean-Marc TI - Hyperbolic ends with particles and grafting on singular surfaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 181 EP - 216 VL - 36 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.05.001/ DO - 10.1016/j.anihpc.2018.05.001 LA - en ID - AIHPC_2019__36_1_181_0 ER -
%0 Journal Article %A Chen, Qiyu %A Schlenker, Jean-Marc %T Hyperbolic ends with particles and grafting on singular surfaces %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 181-216 %V 36 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.05.001/ %R 10.1016/j.anihpc.2018.05.001 %G en %F AIHPC_2019__36_1_181_0
Chen, Qiyu; Schlenker, Jean-Marc. Hyperbolic ends with particles and grafting on singular surfaces. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 181-216. doi : 10.1016/j.anihpc.2018.05.001. http://www.numdam.org/articles/10.1016/j.anihpc.2018.05.001/
[1] Notes on: “Lorentz spacetimes of constant curvature” [Geom. Dedic. 126 (2007) 3–45; mr2328921] by G. Mess, Geom. Dedic., Volume 126 (2007), pp. 47–70 | MR | Zbl
[2] Canonical Wick Rotations in 3-Dimensional Gravity, Memoirs of the American Mathematical Society, vol. 198, 2009 (164 pp.) | arXiv | DOI | MR | Zbl
[3] Constant mean curvature foliation of globally hyperbolic spacetimes locally modelled on AdS3 , Geom. Dedic., Volume 126 (2007) no. 1, pp. 71–129 | DOI | MR | Zbl
[4] Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes, application to the Minkowski problem in Minkowski space, Ann. Inst. Fourier (Grenoble), Volume 61 (2011) no. 2, pp. 511–591 | DOI | Numdam | MR | Zbl
[5] Collisions of particles in locally AdS spacetimes I. Local description and global examples, Commun. Math. Phys., Volume 308 (2011) no. 1, pp. 147–200 | DOI | MR | Zbl
[6] Sard's theorem for mappings in Hölder and Sobolev spaces, Manuscr. Math., Volume 118 (2005), pp. 383–397 | DOI | MR | Zbl
[7] On Codazzi tensors on a hyperbolic surface and flat Lorentzian geometry, Int. Math. Res. Not. (2016) no. 2, pp. 343–417 | MR | Zbl
[8] A cyclic extension of the earthquake flow, Geom. Topol., Volume 17 (2013) no. 1, pp. 157–234 | DOI | MR | Zbl
[9] A cyclic extension of the earthquake flow II, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 4, pp. 811–859 | MR | Zbl
[10] AdS manifolds with particles and earthquakes on singular surfaces, Geom. Funct. Anal., Volume 19 (2009) no. 1, pp. 41–82 | DOI | MR | Zbl
[11] Fundamentals of Hyperbolic Manifolds, London Mathematical Society Lecture Note Series, vol. 328, Cambridge University Press, 2006 | Zbl
[12] Constant Gauss curvature foliations of AdS spacetimes with particles | arXiv | DOI | Zbl
[13] Global aspects of the Cauchy Problem in general relativity, Commun. Math. Phys., Volume 14 (1969), pp. 329–335 | DOI | MR | Zbl
[14] Collars and partitions of hyperbolic cone-surfaces, Geom. Dedic., Volume 127 (2007), pp. 139–149 | DOI | MR | Zbl
[15] Complex projective structures, Handbook of Teichmüller Theory, Vol. 2, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 455–508 | DOI | MR | Zbl
[16] Harmonic maps of conic surfaces with cone angles less than , Commun. Anal. Geom., Volume 23 (2015) no. 4, pp. 717–796 | DOI | MR | Zbl
[17] The convex core of quasifuchsian manifolds with particles, Geom. Topol., Volume 18 (2014) no. 4, pp. 2309–2373 | DOI | MR | Zbl
[18] Minimal surfaces and particles in 3-manifolds, Geom. Dedic., Volume 126 (2007), pp. 187–254 (MR MR2328927) | DOI | MR | Zbl
[19] A symplectic map between hyperbolic and complex Teichmüller theory, Duke Math. J., Volume 150 (2009) no. 2, pp. 331–356 | DOI | MR | Zbl
[20] On the renormalized volume of hyperbolic 3-manifolds, Commun. Math. Phys., Volume 279 (2008), pp. 637–668 | DOI | MR | Zbl
[21] Deformation spaces on geometric structures, Aspects of Low-Dimensional Manifolds, Adv. Stud. Pure Math., vol. 20, Kinokuniya, Tokyo, 1992, pp. 263–299 | DOI | MR | Zbl
[22] Immersions isométriques elliptiques et courbes pseudo-holomorphes, J. Differ. Geom., Volume 30 (1989) no. 2, pp. 395–424 | DOI | MR | Zbl
[23] Surfaces convexes dans l'escapce hyperbolique et structures, J. Lond. Math. Soc. (2), Volume 45 (1992), pp. 549–565 | MR | Zbl
[24] Lorentz spacetimes of constant curvature, Geom. Dedic., Volume 126 (2007), pp. 3–45 | MR | Zbl
[25] Point singularities and conformal metrics on Riemann surfaces, Proc. Am. Math. Soc., Volume 103 (1988) no. 1, pp. 222–224 | MR | Zbl
[26] Quasi-Fuchsian manifolds with particles, J. Differ. Geom., Volume 83 (2009) no. 1, pp. 75–129 | DOI | MR | Zbl
[27] Flat conformal structures and the classification of de Sitter manifolds, Commun. Anal. Geom., Volume 7 (1999) no. 2, pp. 325–345 | DOI | MR | Zbl
[28] Notes on the Schwarzian tensor and measured foliations at infinity of quasifuchsian manifolds, 2017 | arXiv
[29] Three-Dimensional Geometry and Topology, Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, 1997 | MR | Zbl
[30] Maximal surfaces in anti-de Sitter 3-manifolds with particles, Ann. Inst. Fourier (Grenoble), Volume 66 (2016) no. 4, pp. 1409–1449 | DOI | Numdam | MR | Zbl
[31] Minimal diffeomorphism between hyperbolic surfaces with cone singularities (to appear in Commun. Anal. Geom.) | arXiv | DOI | MR | Zbl
[32] Teichmüller Theory in Riemannian Geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992 | MR | Zbl
[33] Prescribing curvature on compact surfaces with conical singularities, Trans. Am. Math. Soc., Volume 324 (1991) no. 2, pp. 793–821 | DOI | MR | Zbl
Cité par Sources :