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Abstract

We prove that any 3-dimensional hyperbolic end with particles (cone singularities along infinite curves of angles less than π ) 
admits a unique foliation by constant Gauss curvature surfaces. Using a form of duality between hyperbolic ends with particles and 
convex globally hyperbolic maximal (GHM) de Sitter spacetime with particles, it follows that any 3-dimensional convex GHM de 
Sitter spacetime with particles also admits a unique foliation by constant Gauss curvature surfaces. We prove that the grafting map 
from the product of Teichmüller space with the space of measured laminations to the space of complex projective structures is a 
homeomorphism for surfaces with cone singularities of angles less than π , as well as an analogue when grafting is replaced by 
“smooth grafting”.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let θ = (θ1, ..., θn0) ∈ (0, π)n0 . In this paper we consider an oriented connected closed surface � of genus g with 
n0 marked points p1, ..., pn0 and suppose that

2π(2 − 2g) +
n0∑
i=1

(θi − 2π) < 0. (1)
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This ensures that � can be equipped with a hyperbolic metric with cone singularities of angle θi at the marked 
points pi for i = 1, ..., n0 (see e.g. [25,33]). We denote by T�,θ the Teichmüller space of hyperbolic metrics on � with 
fixed cone angles, which is the space of hyperbolic metrics on � with cone singularities of angle θi at pi , considered 
up to isotopy fixing each marked point (see more precisely Section 2.1). We also denote p = (p1, · · · , pn0), and let 
MLp be the space of measured laminations on �p = � \ {p1, · · · , pn0}. It is well-known that for all g ∈ T�,θ , any 
l ∈ MLp can be uniquely realized as a geodesic measured lamination on (�, g).

1.1. Hyperbolic ends with particles

We are interested in non-complete 3-dimensional hyperbolic manifolds homeomorphic to � ×R, with cone singu-
larities of angle θi along {pi} ×R, for all i ∈ {1, · · · , n0}. A relatively simple space of metrics of this type is provided 
by the quasifuchsian metrics with particles studied e.g. in [17,26]: complete hyperbolic cone-manifolds containing a 
non-empty, compact, convex subset.

Those quasifuchsian manifolds with particles contain a smallest non-empty convex subset, called their convex 
core. The complement of the convex core is the disjoint union of two non-complete manifolds, each homeomorphic 
to � × (0, +∞), complete on the +∞ side, but bounded on the 0 side by a concave pleated surface orthogonal to the 
particles. Moreover their boundary at infinity is endowed with a complex projective structure, with cone singularities 
of angle θi at the endpoint at infinity of the particle {pi} × (0, +∞).

Here we are interested in non-degenerate hyperbolic ends with particles: non-complete hyperbolic manifolds 
homeomorphic to � × (0, +∞), with cone singularities of angle θi along {pi} × (0, +∞), complete on the +∞
side, and bounded by a concave pleated surface orthogonal to the particles (see Definition 2.7 for more details). For 
instance, the complement of the convex core of a quasifuchsian manifold with particles is the disjoint union of two 
non-degenerate hyperbolic ends with particles. We call HEθ the space of those non-degenerate hyperbolic ends with 
particles, up to isotopy fixing each singular curve.

Our first result is a one-to-one correspondence between those hyperbolic ends and complex projective structures 
on � with cone singularities of prescribed angle at the pi .

Theorem 1.1. For each hyperbolic end M ∈ HEθ , the boundary at infinity ∂∞M is equipped with a complex projective 
structure with cone singularities of angle θi at the pi . Conversely, any complex projective structure on � with cone 
singularities of angle θi at the pi is obtained at infinity from a unique hyperbolic end M ∈ HEθ .

We will denote by CPθ the space of complex projective structures on � with cone singularities of angle θi at the 
pi , considered up to isotopy fixing the marked points.

1.2. Grafting on hyperbolic surfaces with cone singularities

Given a hyperbolic end M ∈ HEθ , its concave pleated boundary is equipped with a hyperbolic metric m with 
cone singularities of angle θi at the pi . Moreover, it is pleated along a measured geodesic lamination l. We prove in 
Section 3.9 that its complex projective structure at infinity σ is obtained by a grafting operation, applied along l to the 
Fuchsian complex projective structure associated to (�, m). Moreover, we will show that it follows from Theorem 1.1
that any complex projective structure σ ∈ CPθ is obtained uniquely in this manner. The following statement, extending 
a classical result of Thurston (see e.g. [15, Theorem 4.1]) to hyperbolic surfaces with cone singularities, will be a 
consequence.

Theorem 1.2. The grafting map defined for non-singular hyperbolic surfaces extends to a map Grθ : T�,θ ×MLp →
CPθ . This map is a homeomorphism.

1.3. Foliations of hyperbolic ends with particles by K-surfaces

We also prove that our non-degenerate hyperbolic ends with particles have a unique foliation by surfaces of constant 
(Gauss) curvature, extending a result of Labourie [23, Theorem 1].
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Theorem 1.3. Let M ∈ HEθ be a non-degenerate hyperbolic end with particles. There is a unique foliation of M by 
surfaces of constant curvature K with K varying from −1 near the concave pleated boundary to 0 near the boundary 
at infinity. Moreover, for each K ∈ (−1, 0), M contains a unique closed surface of constant curvature K .

1.4. De Sitter spacetimes with particles

Given a non-singular hyperbolic end M , there is a “dual” future-complete globally hyperbolic maximal de Sitter 
spacetime Md . There are several ways to describe this duality, but one way is by noting that future-complete globally 
hyperbolic maximal de Sitter spacetimes are equipped with a complex projective structure at infinity (see [1,24,27]) 
that uniquely determines them. The complex projective structure defined at infinity by M and Md are identical.

We extend this point of view to future-complete convex globally hyperbolic maximal (GHM) de Sitter spacetimes 
with particles, as defined in Section 2.4.

We denote by DSθ the space of future-complete convex GHM de Sitter spacetimes homeomorphic to � ×(0, +∞), 
with cone singularities of angle θi along {pi} × (0, +∞), up to isotopy fixing each singular line.

Theorem 1.4. Any future-complete convex GHM de Sitter spacetime Md ∈ DSθ determines on � a complex projective 
structure with cone singularities of angle θi at the pi . Any complex projective structure σ ∈ CPθ is obtained from a 
unique Md ∈ DSθ .

This result, along with Theorem 1.1, determines a natural map from HEθ to DSθ sending a hyperbolic end with 
particles to the unique future-complete convex GHM de Sitter spacetime with the same complex projective structure 
at infinity.

This duality extends to closed strictly concave surfaces (orthogonal to the particles) in those hyperbolic ends and 
closed strictly future-convex surfaces (orthogonal to the particles) in the corresponding de Sitter spacetimes.

Theorem 1.5. Let M ∈ HEθ be a non-degenerate hyperbolic end with particles, and let Md ∈ DSθ be the dual 
future-complete convex GHM de Sitter spacetime with particles. Given a closed, strictly concave surface S ⊂ M , 
there is a unique strictly future-convex spacelike surface Sd and a unique diffeomorphism u : S → Sd such that 
u∗I d = III and u∗IIId = I , where I, III are the induced metric and third fundamental form on S, and I d and IIId are 
the induced metric and third fundamental form on Sd .

Conversely, given any space-like, strictly future-convex surface Sd in Md , there is a unique strictly concave surface 
S in M such that Sd is the dual of S in the sense of Theorem 1.5.

Proposition 1.6. Let S be a strictly concave surface in M , and let Sd be the dual surface in Md . Then S has constant 
curvature K ∈ (−1, 0) if and only if Sd has constant curvature Kd = K/(K + 1) ∈ (−∞, 0).

1.5. Foliations of de Sitter spacetimes with particles by K-surfaces

As a consequence of Proposition 1.6, each foliation of a non-degenerate hyperbolic end with particles has a dual 
foliation of the dual future-complete convex GHM de Sitter space-time. We therefore obtain the following.

Corollary 1.7. Let Md ∈ DSθ be a future-complete convex GHM de Sitter spacetime with particles. There is a unique 
foliation of Md by surfaces of constant curvature Kd with Kd varying from −∞ near the initial singularity to 0
near the boundary at infinity. Moreover, for each Kd ∈ (−∞, 0), Md contains a unique closed surface of constant 
curvature Kd .

This gives an affirmative answer to Question 6.4 in [18], and generalizes a result about constant Gauss curvature 
foliation of future-complete globally hyperbolic maximal compact de Sitter spacetimes (see [4, Theorem 2.1]) to the 
case with particles.
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Fig. 1. A diagram showing the relations among all the spaces.

1.6. Smooth grafting on hyperbolic surfaces with cone singularities

Constant Gauss curvature surfaces in hyperbolic ends are related to the “smooth grafting” map SGr : (0, 1) × T ×
T → CP , see [8, Section 1.2]. The properties of K-surfaces in hyperbolic ends with particles as described here show 
that this “smooth grafting” map is still well-defined on hyperbolic surfaces with cone singularities of angles less than 
π , as a map SGrθ from (0, 1) × T�,θ × T�,θ to CPθ .

For each K ∈ (−1, 0), we construct a map φK : T�,θ × T�,θ → HEθ sending a pair of hyperbolic metrics (h, h′) ∈
T�,θ × T�,θ with cone singularities to the unique hyperbolic end with particles containing a constant curvature K
surface with induced metric homothetic to h and third fundamental form homothetic to h′. We prove that φK is 
a homeomorphism (see Proposition 5.3) and that HEθ is parameterized by a homeomorphism f1 : HEθ → CPθ

(see Proposition 3.11). For each r ∈ (0, 1), we define SGrθ (r, ·, ·) to be f1 ◦ φK : T�,θ × T�,θ → CPθ , where K =
−4r/(1 + r)2. The applications of constant Gauss curvature foliations in hyperbolic ends with particles and smooth 
grafting on hyperbolic surfaces with cone singularities are outlined in Section 5.6.

This implies that for all r ∈ (0, 1), the map SGrθ (r, ·, ·) is a homeomorphism from T�,θ × T�,θ to CPθ . We do 
not elaborate on this point here, since it follows from the same arguments as in the non-singular case, see [8]. The 
relations among all the spaces we consider throughout this paper are presented in Fig. 1, which is a combination of 
Fig. 2, Fig. 3 and Fig. 4, in Section 3.8, Section 4.2 and Section 6.2 respectively.

1.7. Outline of the paper

Section 2 contains the background material on various notions used in the paper.
In Section 3 we analyse the complex projective structure at infinity of a hyperbolic end with particles, and show that 

a hyperbolic end with particles is uniquely determined by either a complex projective structure with cone singularities, 
or a meromorphic quadratic differential (with respect to a conformal structure) on � with at worst simple poles at the 
marked points. We also describe the induced metric and pleating data on the “compact” boundary of a hyperbolic 
end with particles, and show that a hyperbolic end with particles is uniquely determined by a hyperbolic metric with 
cone singularities along with a measured lamination. As a consequence, we obtain at the end of Section 3 the proof of 
Theorem 1.2, on the grafting map for surfaces with cone singularities.

The same analysis is conducted in Section 4 for convex GHM de Sitter spacetimes with particles. The two con-
structions, taken together, allow for the definition of the duality between hyperbolic ends with particles and convex 
GHM de Sitter spacetimes with particles, and some key properties of this duality are developed.

We then turn in Section 5 to constant Gauss curvature surfaces in hyperbolic ends with particles, and show how a 
pair of hyperbolic metrics with cone singularities uniquely determine a hyperbolic end with particles.

Finally, Section 6 deals with convex GHM de Sitter spacetimes with particles, develops the duality relation between 
hyperbolic ends with particles and convex GHM de Sitter spacetimes with particles, and obtains the results on constant 
Gauss curvature surfaces in those de Sitter spacetimes.
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2. Background material

2.1. Hyperbolic surfaces with cone singularities

First we recall the local model of a hyperbolic metric with a cone singularity of angle θ0 on surfaces.
Let H2 be the Poincaré model of the hyperbolic plane. Denote by H2

θ0
the space obtained by taking a wedge of 

angle θ0 bounded by two half-lines intersecting at the center 0 of H2 and gluing the two half-lines by a rotation fixing 
0. We call H2

θ0
the hyperbolic disk with cone singularity of angle θ0, which is a punctured disk with the induced metric

gθ0 = dr2 + sinh2(r)dα2,

where (r, α) ∈ R>0 ×R/θ0Z is a polar coordinate of H2
θ0

.
Note that the hyperbolic metrics near the cone singularities throughout this paper are assumed to satisfy a regularity 

condition. This ensures the existence of harmonic maps from Riemann surfaces with marked points to hyperbolic 
surfaces with cone singularities at the marked points (see [16, Theorem 2]), so that we can relate minimal Lagrangian 
maps (see Definition 2.12) to harmonic maps, and apply the result in [12, Lemma 3.19] to show the continuity of the 
parametrization map φK of HEθ (see Section 5.3). This regularity condition is defined by using the weighted Hölder 
spaces (see [16, Section 2.2] and [31, Definition 2.1]).

Definition 2.1. For R > 0, let D(R) := {z ∈ C, 0 < |z| ≤ R}. A function f : D(R) → C is said to be in χ0,γ

b (D(R))

with γ ∈ (0, 1) if

||f ||
χ

0,γ
b

:= sup
z∈D(R)

|f (z)| + sup
z,z′∈D(R)

|f (z) − f (z′)|
|α − α′|γ + | r−r ′

r+r ′ |γ
< ∞,

where z = reiα and z′ = r ′eiα′
. Let k ∈N, we say that f ∈ χ

k,γ

b (D(R)) if (r∂r )
i∂

j
αf is in χ0,γ

b (D(R)) for all i+j ≤ k. 
In particular, this implies that f ∈ Ck(D(R)).

The space χk,γ

b (D(R)) has an alternative characterization (see [16, Section 2.2]), that is, the space of functions 
from D(R) to C with Ck,γ norm uniformly bounded on balls of uniform size with respect to the metric (dr2 +
r2dα2)/r2. Under the transformation w(z) = log z and let 
 = w(D(R)), this space has a simpler description, denoted 
by Ck,γ (
), which consists of functions from 
 to C with Ck,γ norm uniformly bounded on balls of uniform size with 
respect to the Euclidean metric dρ2 + dβ2, where w = ρ + iβ .

Definition 2.2. Let � be a Riemann surface, let p = (p1, ..., pn0) ∈ �n0 , and let θ = (θ1, ..., θn0) ∈ (0, π)n0 . Let 
γ0 ∈ (0, 1). A hyperbolic metric on � with cone singularities of angle θ at p is a (singular) metric g on �p with the 
property that for each compact subset K ⊂ �p, g|K is C2 and has constant curvature −1, and for each marked point 
pi , there exists a neighborhood Ui ⊂ � with local conformal coordinates z centered at pi and a local diffeomorphism 
ψ ∈ χ

2,γ0
b (Ui \ {pi}) such that g|Ui\{pi } is the pull back by ψ of the metric gθi

. We denote by Mθ−1 the space of 
hyperbolic metrics on � with cone singularities of angle θ at p.

We say that f is a diffeomorphism of �p if for each compact subset K ⊂ �p, f |K is of class C3 and for each marked 
point pi , there exists a neighborhood Ui ⊂ � of pi such that f |Ui\{pi } ∈ χ

2,γ0
b (Ui \ {pi}). Denote by Diff0(�p) the 

space of diffeomorphisms on �p which are isotopic to the identity (fixing each marked point). They act by pull-back 
on Mθ−1. We say that two metrics h1, h2 ∈ Mθ−1 are isotopic if there exists a map f ∈ Diff0(�p) such that h1 is the 
pull back by f of h2.

Note that Diff0(�p) is indeed a group. Since Ck,γ (
) ∩Diff(
) is closed under composition and inverse for any 
fixed k ≥ 1 and γ ∈ (0, 1) (see e.g. [6, Theorem 2.1, Lemma 2.3]), then the same holds for χk,γ

b (D(R)) ∩Diff(D(R)), 
where Diff(
) is the space of self-diffeomorphisms of 
 and similarly for Diff(D(R)). Combined with the fact that 
all the maps in Diff0(�p) fix each marked point pi , this shows that Diff0(�p) is a group.

Denote by T�,θ the space of isotopy classes of hyperbolic metrics on � with cone singularities of angle θ at p. Note 
that T�,θ =Mθ /Diff0(�p) and Mθ is a differentiable submanifold of the manifold consisting of all H2 symmetric 
−1 −1
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(0,2)-type tensor fields (see e.g. [32] for non-singular case). T�,θ is a finite-dimensional differentiable manifold which 
inherits a natural quotient topology.

2.2. Hyperbolic 3-dimensional manifolds with particles

First we recall the related notations and terminology in order to define hyperbolic manifolds with particles.

2.2.1. Hyperbolic 3-space
Let R3,1 be R4 with the quadratic form q(x) = x2

1 +x2
2 +x2

3 −x2
4 . The hyperbolic 3-space is defined as the quadric:

H
3 = {x ∈R

3,1 : q(x) = −1, x4 > 0}.
It is a 3-dimensional Riemannian symmetric space of constant curvature −1, diffeomorphic to a 3-dimensional open 
ball B3. The group Isom0(H

3) of orientation preserving isometries of H3 is SO+(3, 1) ∼= PSL2(C).

2.2.2. The singular hyperbolic 3-space
Let θ0 > 0. We define the singular hyperbolic 3-space with cone singularities of angle θ0 as the space

H
3
θ0

:= {(ρ, r,α) ∈ R×R>0 ×R/θ0Z}
with the metric

dρ2 + cosh2(ρ)(dr2 + sinh2(r)dα2).

The set {r = 0} is called the singular line in H3
θ0

and θ0 is called the total angle around this singular line.

A direct computation shows that H3
θ0

has constant curvature −1 outside the singular line. Indeed, it is obtained 
from the hyperbolic plane with a cone singularity of angle θ0 by taking a warped product with R (see e.g. [18]).

2.2.3. Hyperbolic manifold with particles
A hyperbolic manifold with particles is a 3-manifold endowed with a metric for which each point has a neighbor-

hood isometric to a subset of H3
θ0

for some θ0 ∈ (0, π).
In a hyperbolic manifold M with particles, those points which have a neighborhood isometric to a neighborhood 

of a point of some H3
θ0

outside the singular line are called regular points, while the others are called singular points. 
We denote by Mr the set of regular points and by Ms the set of singular points. By definition, Ms is a disjoint union of 
curves. To each of those curves is associated a number, which is equal at each point to the number θ0 in the definition, 
called the total angle around the singular curve (see e.g. [17–19]).

Definition 2.3. We say that B is a regular half-ball in H3
θ0

if it is isometric to the interior of a hyperbolic half-ball 
in H

3. We say that B is a singular half-ball in H3
θ0

if it can be written as the subset {x ∈ H
3
θ0

: ρ > 0, d(x, O) < r0} for 
some r0 > 0, where O = (0, 0, 0) ∈ H

3
θ0

and d is the hyperbolic distance induced by the metric on H3
θ0

.

Definition 2.4. Let S ⊂H
3
θ0

be a surface which intersects the singular line at a point x. S is orthogonal to the singular 
line at x if the distance from a point y of S to the totally geodesic plane P orthogonal to the singular line at x satisfies:

lim
y∈S,y→x

d(y,P )

dS(x, y)
= 0,

where dS(x, y) is the distance between x and y with respect to the induced metric on S.
If now S is a surface in a hyperbolic manifold M with particles which intersects a singular curve l at a point x′, S

is said to be orthogonal to l at x ′ if there exists a neighborhood U of x′ in M which is isometric to a neighborhood of 
a singular point in H3

θ0
such that the isometry sends S ∩ U to a surface orthogonal to the singular line in H3

θ0
. We say 

that S is orthogonal to the singular locus if S is orthogonal to the singular curve of M at each intersection with the 
singular locus.
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Definition 2.5. Let M be a hyperbolic manifold with particles and let 
 be a subset of the metric completion M̄ of M . 
We say 
 is concave if there is no geodesic segment in the interior of 
 with endpoints in ∂
.

Let M be a hyperbolic manifold with particles which is homeomorphic to � ×R>0 and has a metric completion M̄
homeomorphic to � ×R≥0. We will write that a closed, oriented surface S ⊂ M̄ (which is an incompressible surface 
in M and homeomorphic to �) is concave if the connected component of M̄ \ S on the positive side is concave. We 
also assume that the surfaces are orthogonal to the singular locus.

It follows from the definition that if S is a concave surface and x ∈ S, there is at least one “local support plane” 
of S at x in the neighborhood of x, that is, a totally geodesic disk centered at x and not intersecting the negative side 
of S. In particular, if x is a singular point, then the totally geodesic support disk is orthogonal to the singular curve 
at x.

2.3. Hyperbolic ends with particles

In this section we consider a hyperbolic manifold with particles M which is homeomorphic to � × R>0 and has 
a metric completion M̄ homeomorphic to � ×R≥0. For convenience, we denote by ∂∞M the boundary at infinity of 
M , and by ∂0M the metric boundary M̄ \ M , which therefore corresponds to the surface � × {0} in the identification 
of M̄ with � ×R≥0. We will suppose that ∂0M is concave, in the sense of Definition 2.5, orthogonal to the particles, 
and that the particles start on ∂0M and end on the boundary at infinity of M .

Let x ∈ ∂0M , and let n ∈ TxM be a non-zero vector. We will say that n is normal to ∂0M if there is a half-ball 
centered at x in M̄ such that n is normal to the totally geodesic part of the boundary of the half-ball. We denote by 
N∂0M the space of vectors normals to ∂0M , so that the fiber of N∂0M over a point where ∂0M is totally geodesic is 
a line, while it is an angular sector over a point of a pleating line of ∂0M . Given v = (x, n) ∈ N∂0M , we denote by 
exp(v) ∈ M the point γ (1), where γ : [0, 1] → M is the geodesic such that γ (0) = x and γ ′(0) = n, if it exists. This 
defines a map, called exp, from a subset of N∂0M to M .

Lemma 2.6. exp is a homeomorphism from N∂0M to M .

Proof. Note first that since ∂0M is concave and M is hyperbolic, exp is a local diffeomorphism from N∂0M to M , 
sending the fibers of N∂0M over the singular points to the cone singularities of M .

We will prove that exp is globally injective. Note that exp is injective in the neighborhood of the zero section, that 
is, there exists r > 0 such that if we set

Nr∂0M = {(x,n) ∈ N∂0M | ‖n‖ < r} ,

then the restriction exp|Nr∂0M
is injective. We call r0 the supremum of all r > 0 such that the restriction of exp to 

Nr∂0M is injective, and we will prove that r0 = ∞.
Suppose by contradiction that r0 is finite. It follows from the compactness of ∂0M that there exist (x, v), (y, w) ∈

N∂0M such that ‖v‖ = r0, ‖w‖ ≥ r0 and that exp(x, v) = exp(y, w). Moreover, ‖w‖ = r0, since otherwise the local 
injectivity of exp at (x, v) and (y, w) would imply that exp|Nr∂0M

stops being injective for r < r0.
We now consider three cases, depending on whether x and y are regular or singular points of ∂0M .

• If both x and y are singular points of ∂0M , then either the cone singularities along the singular curves starting 
from x and y intersect — this would contradict our definition of a hyperbolic manifold with particles, since 
the particles must be disjoint — or those cone singularities are in fact on the same singular line. In this second 
case, there is a singular segment of length 2r0 starting from x and ending at y. This would again contradict our 
definition, since the particles are requested to start on ∂0M and end at infinity.

• If both x and y are regular points, then the locally concave surfaces exp(∂(Nr0∂0M) must have point of self-
tangency at exp(x, v) = exp(y, w), again by definition of r0. It then follows that exp({x} × [0, v]) ∪ exp({y} ×
[0, w]) is a geodesic segment connecting x to y, contradicting the concavity of ∂0M .

• If x is a singular point and y is regular point of ∂0M . Then exp(∂(Nr0∂0M) intersects the singular curve starting 
from x at exp(x, v) = exp(y, w), and there is no such intersection for r < r0. An elementary geometric argument 
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shows that this is impossible when the cone angles are less than π , since otherwise exp(Nr∂0M) would already 
have self-intersections for r < r0 close enough to r0.

So we can conclude that exp : N∂0M → M is globally injective. It is also proper, and since it is a local homeomor-
phism in the neighborhood of the zero section, we can conclude that it is a homeomorphism. �
Definition 2.7. A non-degenerate hyperbolic end with particles is a non-complete hyperbolic manifold M with parti-
cles which is homeomorphic to � ×R>0, where � is a prescribed closed surface with marked points p, such that

• It has a metric completion M̄ homeomorphic to � ×R≥0, which is complete on the +∞ side.
• The metric boundary � ×{0}, which we will denote by ∂0M , is pleated (i.e. for each x ∈ ∂0M \M̄s , x is contained 

in the interior of either a geodesic segment or a geodesic disk of M̄ which is contained in ∂0M).
• The singular locus in M̄ intersects ∂0M orthogonally in totally geodesic regions.

The boundary at infinity ∂∞M inherits a complex projective structure with cone singularities (see Proposition 3.4). 
The extended singular curves in M̄ remain disjoint from each other.

Denote by Diff0(� ×R>0) the space of diffeomorphisms on � ×R>0 isotopic to the identity among maps fixing 
each singular curve. Two hyperbolic ends with particles (M1, g1) and (M2, g2) are isotopic if there exists a map 
f ∈ Diff0(� × R>0) such that g1 is the pull back by f of g2. Let HEθ be the space of non-degenerate hyperbolic 
ends with particles up to isotopy. For the sake of simplicity, we shall call the elements (as isotopy classes or their 
representatives) in HEθ hyperbolic ends with particles henceforth.

Let L be the bending locus of ∂0M , which is the complement of those points x that admit a local support plane P
such that P ∩ ∂0M is a neighborhood of x in ∂0M .

Remark 2.8. If L = ∅, ∂0M is totally geodesic (orthogonal to the singular locus) and we say that M is Fuchsian. If 
L �=∅, it follows from the definition that L is foliated by mutually disjoint complete geodesics of M̄ . Moreover, L is 
the support of a measured lamination λ on ∂0M , called the bending lamination, with the transverse measure recording 
the bending of ∂0M along L (see e.g. [10, Proposition 5.4], [26, Lemma A.15]).

Let (M, g) be a hyperbolic end with particles. The shape operator B : T S → T S of an embedded surface S ⊂ M

with induced metric I is defined as

B(u) = ∇un,

where n is the positive-directed unit normal vector field on S and ∇ is the Levi-Civita connection of (M, g). The 
second and third fundamental forms on S are defined respectively as

II(u, v) = I (Bu,v), III(u, v) = I (Bu,Bv).

If S is smooth outside the intersection with singular locus in M , it is equivalent to say that S is concave (resp. 
strictly concave) if the principal curvatures at each regular point of S are both non-negative (resp. positive).

2.4. Convex GHM de Sitter spacetimes with particles

In order to define convex GHM de Sitter spacetimes with particles, we recall the related definitions.

2.4.1. The de Sitter 3-space
Consider the same ambient space R3,1, similarly as for H3. The de Sitter 3-space is defined as the quadric:

dS3 = {x ∈ R
3,1 : q(x) = 1}.

It is a 3-dimensional Lorentzian symmetric space of constant curvature +1, diffeomorphic to S2 × R, where S2 is 
a 2-sphere. It is time-orientable and we choose the time orientation for which the curve t �→ (cosh t, 0, 0, sinh t)

is future-oriented. The group Isom0(dS3) of time-orientation and orientation preserving isometries of dS3 is 
SO+(3, 1) ∼= PSL2(C).
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Consider the map π : R3,1\{0} → S
3, where S3 is the double cover of RP 3 and π sends a point x to the half-line 

from 0 passing through x. We define the Klein model DS3 of de Sitter 3-space as the image DS3 = π(dS3) (note that 
some authors define the Klein model as the projection of dS3 to RP 3 [2, Section 2.3], here we use S3 instead of RP 3

in order to keep it time-orientable, see e.g. [4, Section 5.2.1]). The projection π : dS3 → DS3 is a diffeomorphism. 
The boundary ∂DS3 is the image of the quadratic Q = {x ∈ R

3,1 : q(x) = 0} under π , which is a disjoint union of two 
2-spheres: S2+ = π({x ∈ Q : x4 > 0}) and S2− = π({x ∈ Q : x4 < 0}).

A complete geodesic line in DS3 is spacelike (resp. lightlike, timelike) if it is contained in DS3 (resp. if it is tangent 
to S2+ and S2−, if it has endpoints lying on S2+ and S2− respectively).

2.4.2. The singular de Sitter 3-space
Let θ0 > 0. We define the singular de Sitter 3-space with cone singularities of angle θ0 as the space

dS3
θ0

:= {(t, ϕ,α) ∈ R× [0,π] ×R/θ0Z}
with the metric

−dt2 + cosh2(t)(dϕ2 + sin2(ϕ)dα2).

The set R × {0, π} × R/θ0Z is called the singular line in dS3
θ0

and θ0 is called the total angle around this singular 
line. One can check that dS3

θ0
is a Lorentzian manifold of constant curvature +1 outside the singular line. Indeed, it is 

obtained from the spherical surface with two cone singularities of angle θ0 by taking a warped product with R.
An embedded surface in dS3

θ0
is spacelike if it intersects the singular line at exactly one point and it is spacelike 

outside the intersection with the singular locus.

2.4.3. De Sitter spacetimes with particles
A de Sitter spacetime with particles is a (singular) Lorentzian 3-manifold in which any point x has a neighborhood 

isometric to a subset of dS3
θ0

for some θ0 ∈ (0, π).

Let Md be a de Sitter spacetime with particles which is homeomorphic to � ×R. A closed embedded surface S in 
Md is spacelike if it is locally modeled on a spacelike surface in dS3

θ0
for some θ0 ∈ (0, π). Similarly as the hyperbolic 

case, we can define the orthogonality of spacelike surfaces with respect to the singular locus in a de Sitter spacetime 
with particles.

Definition 2.9. Let S ⊂ dS3
θ0

be a spacelike surface which intersects the singular line at a point x. S is orthogonal 
to the singular line at x if the causal distance from a point y of S to the totally geodesic plane P orthogonal to the 
singular line at x satisfies:

lim
y∈S,y→x

d(y,P )

dS(x, y)
= 0,

where dS(x, y) is the distance between x and y with respect to the induced metric on S.
If now S is a spacelike surface in a de Sitter spacetime Md with particles which intersects a singular line l at a 

point x′. S is said to be orthogonal to l at x′ if there exists a neighborhood U ⊂ Md of x′ which is isometric to a 
neighborhood of a singular point in dS3

θ0
such that the isometry sends S ∩ U to a surface orthogonal to the singular 

line in dS3
θ0

. We say that S is orthogonal to the singular locus if S is orthogonal to the singular line of Md at each 
intersection with the singular locus.

Definition 2.10. Let S be a spacelike surface orthogonal to the singular curves in a de Sitter spacetime with particles. 
We say that S is future-convex if its future I+(S) is geodesically convex. We say that S is strictly future-convex if 
I+(S) is strictly geodesically convex.

Definition 2.11. A de Sitter spacetime Md with particles is convex GHM if

• Md is convex GH: it contains a strictly future-convex spacelike surface S orthogonal to the singular curves, which 
intersects every inextensible timelike curve exactly once.
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• Md is maximal: if any isometric embedding of Md into a convex GH de Sitter spacetime is an isometry.

Note that by Definition 2.11 a convex GHM de Sitter spacetime with particles is naturally future complete. Denote 
by Diff0(� × R) the space of diffeomorphisms on � × R isotopic to the identity among maps fixing each singular 
line. Denote by DSθ the space of isotopy classes of (future-complete) convex GHM de Sitter metrics on � ×R with 
cone singularities of angles θi along the singular lines {pi} ×R. Here two metrics g1, g2 are isotopic if there exists a 
map f ∈ Diff0(� ×R) such that g1 is the pull back by f of g2. For the sake of simplicity, we shall call the elements 
(as isotopy classes or their representatives) in DSθ (future-complete) convex GHM de Sitter spacetime with particles
henceforth.

Let (Md, g) be a future-complete convex GHM de Sitter spacetime with particles. Let S ⊂ Md be a spacelike 
surface which is orthogonal to the singular locus with the induced metric I . The shape operator B : T S → T S of S is 
defined as

B(u) = ∇un,

where n is the future-directed unit normal vector field on S and ∇ is the Levi-Civita connection of (Md, g). The 
second and third fundamental forms of S are defined respectively as

II(u, v) = I (Bu,v), III(u, v) = I (Bu,Bv).

If S is smooth outside the intersection with singular locus in Md , it is equivalent to say that S is future-convex (resp. 
strictly future-convex) if the principal curvatures at each regular point of S are both non-negative (resp. positive).

2.5. Minimal Lagrangian maps between hyperbolic surfaces with cone singularities

The construction of the parametrization of HEθ by T�,θ × T�,θ here depends strongly on minimal Lagrangian 
maps between hyperbolic surfaces with cone singularities.

Definition 2.12. Given two hyperbolic metrics h, h′ ∈ Mθ−1 with cone singularities, a minimal Lagrangian map m :
(�, h) → (�, h′) is an area-preserving and orientation-preserving diffeomorphism, sending cone singularities to cone 
singularities, such that its graph is a minimal surface in (� × �, h ⊕ h′).

We introduce the following result (see [30, Theorem 1.3]).

Theorem 2.13 (Toulisse). Let h, h′ ∈ Mθ−1. Then there exists a unique minimal Lagrangian diffeomorphism m :
(�, h) → (�, h′) isotopic to the identity among maps sending each cone singularity of h to the corresponding cone 
singularity of h′.

Minimal Lagrangian maps between hyperbolic surfaces with metrics in Mθ
−1 have an equivalent description in 

terms of morphisms between tangent bundles (see e.g. [30, Proposition 6.3], [12, Proposition 2.12]).

Proposition 2.14. Let h, h′ ∈ Mθ−1, and let m : (�, h) → (�, h′) be a diffeomorphism fixing each singular point. 
Then m is a minimal Lagrangian map if and only if there exists a bundle morphism b : T � → T � defined outside the 
singular locus which satisfies the following properties:

• b is self-adjoint for h with positive eigenvalues.
• det(b) = 1.
• b satisfies the Codazzi equation: d∇b = 0, where ∇ is the Levi-Civita connection of h.
• h(b•, b•) = m∗h′.
• Both eigenvalues of b tend to 1 at the cone singularities.

Corollary 2.15. Let h, h′ ∈ Mθ
−1. Then there exists a unique bundle morphism b : T � → T � defined outside the 

singular locus, which is self-adjoint for h with positive eigenvalues, has determinant 1 and satisfies the Codazzi equa-
tion: d∇b = 0, where ∇ is the Levi-Civita connection of h, such that h(b•, b•) is isotopic to h′ and both eigenvalues 
of b tend to 1 at the cone singularities.
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Definition 2.16. We say that a pair of hyperbolic metrics (h, h′) is normalized if there exists a bundle morphism 
b : T � → T � defined outside the singular locus, which is self-adjoint for h, has determinant 1, and satisfies the 
Codazzi equation, such that h′ = h(b•, b•) and both eigenvalues of b tend to 1 at singularities, or equivalently, if the 
identity from (�, h) to (�, h′) is a minimal Lagrangian diffeomorphism.

Remark 2.17. By Corollary 2.15, for any (τ, τ ′) ∈ T�,θ × T�,θ , we can realize (τ, τ ′) as a normalized representative 
(h, h′). Note that the normalized representative of (τ, τ ′) is unique up to isotopies acting diagonally on both h and h′.

We also introduce the following proposition (see e.g. [18, Proposition 3.12], [23]), which provides a convenient 
formula to compute the (sectional) curvatures of certain metrics.

Proposition 2.18. Let � be a surface with a Riemannian metric g. Let A : T � → T � be a bundle morphism such 
that A is everywhere invertible and d∇A = 0, where ∇ is the Levi-Civita connection of g. Let h be the symmetric 
(0, 2)-tensor defined by h = g(A•, A•). Then the Levi-Civita connection of h is given by

∇h
u (v) = A−1∇u(Av),

and its curvature is given by

Kh = Kg

det(A)
.

3. Hyperbolic ends with particles and complex projective structures with cone singularities

3.1. Complex projective structure on � with cone singularities

Let � be the prescribed surface with the marked points p = (p1, ..., pn0) and let θ = (θ1, ..., θn0) ∈ (0, π)n0 . We 
first give a definition of a complex projective structure on � with cone singularities of fixed angles.

Definition 3.1. Let θ0 > 0. We call complex cone of angle θ0, and denote by Cθ0 , the quotient of the universal covering 
of C \ {0} by a rotation of angle θ0 centered at 0.

Definition 3.2. A complex projective structure σ on � with cone singularities of angle θ at p is a maximal atlas of 
charts from �p to CP 1 such that all transition maps are restrictions of Möbius transformations, and for each marked 
point pi , there exists a neighborhood 
i of pi in � and a complex projective map ui : 
i → Cθi

∪ {0} sending pi to 
0, which is a diffeomorphism from 
i \ {pi} to its image.

Note that in the above definition ui is uniquely determined by the complex projective structure σ up to composition 
on Cθi

with a rotation and a homothety.
Two complex projective structures σ1, σ2 with prescribed cone singularities are isotopic if there is an orientation-

preserving diffeomorphism from �p to �p isotopic to the identity that pulls back the projective charts of σ2 to 
projective charts of σ1. We denote by CPθ the set of isotopy classes of complex projective structures on � with cone 
singularities of angle θ at p.

Each complex projective structure σ on � with prescribed cone singularities defines a local diffeomorphism from 
the universal covering �̃p to CP 1, which is a complex projective map with respect to the complex projective structures 
on �̃p and CP 1. We call this map f : �̃p → CP 1 a developing map of σ . There is a homomorphism ρ : π1(�p) →
PSL2(C), called a holonomy representation of σ , such that f is ρ-equivariant. In particular, the image of the small 
loop around each marked point pi under the holonomy ρ is an elliptic element of PSL2(C) of angle θi . We call (f, ρ)

a development-holonomy pair and it is uniquely determined by σ up to the PSL2(C)-action by (f, ρ) �→ (A ◦f, ρA), 
where ρA(γ ) = A ρ(γ ) A−1.
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3.2. The cotangent bundle of T�,θ

Note that each conformal class of a metric on �p with marked points admits a unique hyperbolic metric with cone 
singularities of angle θi at pi (see [33, Theorem A] and [25]), T�,θ is also identified with the space of equivalence 
classes of conformal structures on �p with marked points. Two conformal structures c1 and c2 on �p are equivalent
if there is an orientation-preserving self-homeomorphism of �p isotopic to the identity that pulls back the conformal 
charts of c2 to conformal charts of c1. For the sake of simplicity, we shall denote a conformal structure c and its 
equivalence class [c] by c.

It is known that (see [31, Proposition 2.14]) for each c ∈ T�,θ , the cotangent space T ∗
c T�,θ of T�,θ at c is the space 

of meromorphic quadratic differentials (with respect to the conformal structure c) on � with at worst simple poles at 
the marked points.

We denote by T ∗T�,θ the cotangent bundle of T�,θ , which is a complex 6g − 6 + 2n0-dimensional vector space 
of meromorphic quadratic differentials with respect to a conformal structure in T�,θ , with at worst simple poles at the 
marked points.

3.3. The complex projective structure at infinity of a hyperbolic end M ∈HEθ

We show that the boundary at infinity ∂∞M of a hyperbolic end M ∈ HEθ admits a complex projective structure 
with prescribed cone singularities.

The model space Vα . Let α > 0 and let �0 be a fixed, oriented complete hyperbolic geodesic in H3. Denote by U
the universal cover of the complement of �0 in H3 and denote by V the metric completion of U , such that V \ U is 
canonically identified with �0, which is called the singular set of V . We define Vα (see e.g. [26, Section 3.1]) as the 
quotient of V by the rotation of angle α around �0. The image of the singular set of V under this quotient is called 
the singular set of Vα .

Let M be a hyperbolic end with particles. It is clear that each singular point x of M has a neighborhood isometric 
to a subset of Vα with α equal to the total angle around the singular curve through x. Now we describe the geometry 
property of M near the endpoints at infinity of the singular curves in M by using the model Vα , as in the following 
lemma. With Lemma 2.6, the argument is similar to that in [26, Lemma 3.1, Lemma A.10] as the particular case of 
non-interacting particles.

Lemma 3.3. For each point pi ∈ ∂∞M which is the endpoint at infinity of a singular curve in M , pi has a neighbor-
hood 
i isometric to a neighborhood of one of the endpoints at infinity of �0 in Vθi

, where θi is the total angle around 
that singular curve.

As an analog of the complex projective structure (resp. complex projective structure with cone singularities) in-
duced on the boundary at infinity of a hyperbolic end (resp. a quasi-Fuchsian manifold with particles), a hyperbolic 
end with particles also induces a complex projective structure with cone singularities on the boundary at infinity (see 
e.g. [26, Section 3.2]).

Proposition 3.4. Let M ∈ HEθ be a hyperbolic end with particles. Then the boundary at infinity ∂∞M is equipped 
with a complex projective structure with cone singularities of angle θi at the pi .

Proof. Consider the regular set Mr of M and denote its universal cover by M̃r . Let ∂∞H3 be the boundary at infinity 
of H3. Note that Mr admits a developing map dev : M̃r → H

3, which is locally isometric projection (unique up to 
composition on the left by an isometry of H3).

We define ∂∞M̃r as the space of equivalence classes of geodesic rays in M̃r , where two geodesic rays are equivalent 
if and only if they are asymptotic. Then dev has a natural extension dev : M̃r ∪ ∂∞M̃r → H

3 ∪ ∂∞H
3, which is a 

local homeomorphism. Note that ∂∞H
3 can be identified to CP 1 and the fundamental group of Mr acts on M̃r

by hyperbolic isometries which extend to ∂∞M̃r as Möbius transformation. We can define the boundary at infinity 
of Mr , called ∂∞Mr , as the quotient of ∂∞M̃r by the fundamental group of Mr . Then ∂∞Mr carries a canonical 
CP 1-structure.
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It remains to consider the behavior of the CP 1-structure on ∂∞M near the endpoints of the singular locus in M . 
By Lemma 3.3, there exists a complex projective map ui : 
i → Cθi

∪{0} sending pi to 0, which is a diffeomorphism 
from 
i \ {pi} to its image. By Definition 3.2, ∂∞M has a CP 1-structure with cone singularities (at the endpoints at 
infinity of the singular curves) of angle equal to the total angle around the corresponding singular curve. �
3.4. The meromorphic quadratic differential induced by a complex projective structure in CPθ

As the non-singular case, we can relate CPθ to the space T ∗T�,θ by using Schwarzian derivatives with a special 
analysis near the cone singularities.

Note that Möbius transformations are biholomorphic on CP 1 and CP 1 admits a unique complex structure, a 
complex projective structure on � with cone singularities also determines a complex (or conformal) structure with 
marked points. Note also that a hyperbolic metric on � with cone singularities is a special complex projective structure 
on � with cone singularities (the Möbius transformations as transition functions preserve the unit circle). There is also 
a natural forgetful map

π : CPθ → T�,θ ,

which is continuous and surjective. If σ ∈ CPθ satisfies that π(σ) = c, we say that σ is a complex projective structure 
with the underlying conformal structure c.

Let σ be a complex projective structure on � with prescribed cone singularities with the underlying conformal 
structure c. McOwen [25] and Troyanov [33] proved that there is a unique hyperbolic metric conformal to c, with 
cone singularities of the same angles as σ at the same points. Let σF be the complex projective structure underlying 
this hyperbolic metric h. We call σF the Fuchsian complex projective structure associated to σ . Note that the union 
of the CP 1-atlas of σ and the CP 1-atlas of σF induces a complex atlas, the identity map id : (�p, σF ) → (�p, σ) is 
a conformal map, but not necessary a complex projective map. For convenience, we call this identity map the natural 
conformal map from σF to σ . Similarly, we can consider a natural conformal map from σ to σF .

In the non-singular case, the Schwarzian derivative measures the “difference” between a pair of complex projective 
structures on a Riemann surface. For the singular case, we can also use this tool to measure the difference between 
two complex projective structures in CPθ with the same underlying conformal structure, but one needs to analyze the 
behavior of the Schwarzian derivative at the cone singularities.

Let 
 is a connected open subset of C and let f : 
 → CP 1 be a locally injective holomorphic map. Recall that 
the Schwarzian derivative of f is the holomorphic quadratic differential on 
.

S(f ) =
{(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2
}

dz2

Recall that the Schwarzian derivative has two important properties:

(1) The Schwarzian derivative of a Möbius transformation is zero.
(2) The cocycle property: S(g ◦ f ) = S(f ) + f ∗S(g), where f ∗S(g) is the pull back of the holomorphic quadratic 

differential S(g) under the map f .

Lemma 3.5. Let σ ∈ CPθ be a complex projective structure. Then the Schwarzian derivative of the conformal map 
id : (�p, σ) → (�p, σF ) is a meromorphic quadratic differential in T ∗

c T�,θ , where c is the common underlying 
conformal structure of σ and σF .

Proof. Let ϕ be a local expression (which is a family of locally injective holomorphic functions with respect to the 
CP 1-charts of σ and σF ) of the map id : (�p, σ) → (�p, σF ). Thanks to properties (1) and (2) above, the Schwarzian 
derivative of ϕ remains compatible with the transition functions in the overlaps of two CP 1-charts associated to σ or 
σF , respectively. Thus S(ϕ) is a holomorphic quadratic differential on �p.

It remains to consider the behavior of S(ϕ) near the cone singularities. By Definition 3.2, for each marked point pi

on the complex projective surface (�, σ) (resp. (�, σF )), there is a neighborhood 
i (resp. 
F
i ) of pi and a complex 

projective map u : 
i → Cθi
∪ {0} (resp. uF : 
F → Cθi

∪ {0}) sending pi to 0, which is a diffeomorphism from 
i
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i \ {pi} (resp. 
F
i \ {pi}) to its image. Note that there is a natural holomorphic local diffeomorphism from Cθi

to C, 
defined by sending a point u ∈ Cθi

to u2π/θi . We denote by z, zF the complex coordinates on 
i , 
F
i , respectively. 

Let f be the expression of ϕ near pi under these coordinates with f (0) = 0. It is clear that f is a conformal map in 
a small punctured neighborhood of 0 with the puncture at 0 and it can be continuously extended to the point 0. Hence 
f is conformal in a small neighborhood of 0 and has the expansion:

f (z) = a1z + a2z
2 + ... + anz

n + ...,

where a1 �= 0, ai ∈C for i = 1, 2, ....
Then the map ϕ near pi has the following expression with respect to the complex projective coordinate u via the 

complex coordinates z and zF :

ϕ(u) = (f ((u)
2π
θi ))

θi
2π .

A direct computation shows that the Schwarzian derivative S(ϕ)(u) has the following expansion near u(pi) ∈ Cθi
:

S(ϕ)(u) = u
2π
θi

−2
(b1 + b2 u

2π
θi + ... + bn u

2π
θi

(n−1) + ...) du2,

where bi ∈ C for i ≥ 1.

In the complex coordinate z = u
2π
θi , the Schwarzian derivative S(ϕ)(u) is expressed as

S(ϕ) ◦ z
θi
2π (z) = z1− θi

π (b1 + b2 z + · · · + bn zn−1 + ...)
(
dz

θi
2π

)2

=
(

θi

2π

)2 1

z
(b1 + b2 z + · · · + bn zn−1 + · · · ) dz2.

This implies that S(ϕ) is a meromorphic quadratic differential on � with at worst simple poles at the cone singu-
larities, with respect to the common underlying conformal structure of σ and σF . The lemma follows. �
3.5. Maximal concave extension of a hyperbolic structure near infinity

To construct a hyperbolic end with particles from a complex projective structure with cone singularities, we first 
prove a proposition which ensures the existence and the uniqueness (up to isometry) of the maximal extension of 
a hyperbolic manifold with particles which has a concave metric boundary. Moreover, we show that this maximal 
extension is a hyperbolic end with particles, in the sense of Definition 2.7.

We first introduce two definitions.

Definition 3.6. Let M be a hyperbolic manifold with particles. Let S be a surface in M̄ . We say that a regular (resp. 
singular) point x ∈ S is extremal if there exists a half-ball B in H3 (resp. H3

θ0
for some θ0 ∈ (0, π)), and an isometric 

embedding ϕ : B → M̄ sending the center of B to x, such that ϕ(B̄) ∩ S = {x}.

For example, all the points of a strictly concave surface in a hyperbolic manifold with particles are extremal 
points. The metric boundary of a hyperbolic end with particles contains no extremal points, since it is pleated (see 
Definition 2.7). Conversely, if the metric boundary of a hyperbolic manifold with particles is concave and contains no 
extremal points, then it is pleated.

Definition 3.7. Let M be a hyperbolic manifold with particles which has a concave metric boundary. We say M ′ is a 
concave extension of M if M ′ is a hyperbolic manifold with particles such that ∂0M

′ is concave and orthogonal to the 
singular locus, and M can be isometrically embedded in M ′. We say M ′ is a maximal concave extension of M if M ′
is a concave extension of M and any concave extension of M ′ is isometric to M ′.

Proposition 3.8. Let M0 be a hyperbolic manifold with particles which has a concave metric boundary. Then there 
exists a unique (up to isometry) maximal concave extension of M0, called M , in which M0 can be isometrically 
embedded. Moreover, M is a hyperbolic end with particles.
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Proof. We show the first statement in the following three steps. The argument is an adaption of those for the corre-
sponding results in globally hyperbolic spacetimes (see e.g. [13, Theorem 3], [10, Proposition 2.6]). The point is to 
use the concavity of the metric boundary of a hyperbolic manifold instead of the globally hyperbolicity of a spacetime.

Step 1: Let E be the set of all concave extensions of M0. It is clear that E is non-empty since M0 is a concave 
extension of itself. Given M1, M2 ∈ E , we consider the ordered pairs (N1, N2) such that

• Ni is a subset of Mi in which M0 can be isometrically embedded, for i = 1, 2.
• There is an isometric embedding from M0 to M2 which extends to an isometric embedding from N1 to M2 sending 

N1 to N2.

Denote by C(M1, M2) the set consisting of all such pairs for M1, M2 ∈ E . It is clear that C(M1, M2) is partially 
ordered by inclusion of the first and second item of the pairs, respectively. Moreover, each totally ordered subset of 
C(M1, M2) has an upper bound. By Zorn’s Lemma, there exists a maximal element of C(M1, M2).

Step 2: Now we give a partial order “≤” for the set E by defining M1 ≤ M2 if the isometric embedding from M0

to M2 extends to an isometric embedding from M1 to M2, here M1, M2 ∈ E . We claim that E has a maximal element.
Indeed, let (Mα)α∈A be a totally ordered subset of E and let K = �αMα be the disjoint union of Mα over α ∈ A. 

We define an equivalence relation for the set K . We relate pα ∈ Mα to pβ ∈ Mβ if there exists (Nα, Nβ) ∈ C(Mα, Mβ)

and an isometric embedding from Nα to Mβ which sends pα to pβ , where α, β ∈ A. One can check that this relation 
is an equivalence relation on K . Denote by K̄ the quotient space of K under this equivalence relation. Then K̄ is a 
manifold endowed with a natural differentiable structure and metric. Note that Mα ∈ E and Mα ⊂ K̄ for all α, then K̄
is a hyperbolic manifold with particles in which M0 can be isometrically embedded.

We claim that K̄ has a concave metric boundary orthogonal to the singular locus. This implies that K̄ ∈ E and K̄
is an upper bound of (Mα). Applying Zorn’s Lemma again, there exists a maximal element of E , say M .

Now we show that K̄ has a concave metric boundary. Note that any concave surface in a hyperbolic manifold 
with particles has sectional curvature at least −1. By the assumption (1) and the Gauss–Bonnet formula (see [33, 
Proposition 1]), the area of any incompressible concave surface (homeomorphic to �) has a positive lower bound. 
Note also that the area of a concave surface decreases exponentially with respect to the distance r along the normal 
flow pointing to the non-concave side of S. Combined with the fact that Mα has a concave metric boundary for all 
α ∈ A, then the metric completion of K̄ is homeomorphic to � ×R≥0. Therefore, K̄ has a metric boundary and it is 
naturally concave and orthogonal to the singular locus. The claim follows.

Step 3: We show that M is a concave extension of each element of E . Let M ′ ∈ E . We denote by M̂ the quotient 
space of the disjoint union of M ′ and M under the equivalence relation defined above. It suffices to show M̂ ∈ E , 
since this implies that M̂ is a concave extension of both M and M ′. Note that M is a maximal element of E , then M
is isometric to M̂ and thus a concave extension of M ′. This shows the uniqueness of M (up to isometry).

We now show that M̂ ∈ E . Let (N ′, N) be a maximal element of C(M ′, M) (this is ensured by Step 1) and let ψ
be an isometric embedding from M0 to M which extends to an isometric embedding from N ′ to M sending N ′ to 
N . Denote by ∂N ′ the boundary of N ′ in M̄ ′ and denote by ∂N the boundary of N in M̄ . We claim that for each 
point x ∈ ∂N ′, either x ∈ ∂0M

′ or ψ(x) ∈ ∂0M . Otherwise, there exists a point x ∈ ∂N ′ which is in the interior of M ′
with the image ψ(x) in the interior of M . Note that M ′ and M are both locally modeled on H3

θi
for some θi ∈ (0, π). 

Whatever x is a regular point or a singular point, we can choose a small neighborhood U ′ of x in M ′ and a small 
neighborhood U of ψ(x) in M such that they are isometric to each other. It is clear that (N ′ ∪U ′, N ∪U) ∈ C(M ′, M). 
Note also that N ′ is a proper subset of N ′ ∪ U ′ in M ′. This contradicts that (N ′, N) is the maximal element of 
C(M ′, M). The claim follows.

Note that M̂ = (N ′ ∼= N) � (M ′ \ N ′) � (M \ N). Combined with the above claim, ψ can extend to an isometric 
embedding from N̄ ′ to M̄ sending ∂N ′ to ∂N , then M̂ is Hausdorff. Note that the projection from M � M ′ to M̂ is 
open, every point of M̂ has a neighborhood homeomorphic to R3. This implies that M̂ is a manifold. Similarly as 
Step 2, M̂ inherits a natural hyperbolic structure with particles. Furthermore, M̂ has a metric completion compatible 
with the metric completions of M ′ and M , under which the metric boundary ∂0M̂ is concave (one can check by using 
Definition 2.5) and orthogonal to the singular locus. Moreover, M̂ is a hyperbolic manifold with particles in which 
M0 can be isometrically embedded. This implies that M̂ ∈ E .
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We now show the second statement: the unique maximal concave extension M of M0 is a hyperbolic end with 
particles. By definition, M is a hyperbolic manifold with particles and has a concave metric boundary ∂0M which is 
orthogonal to the singular locus. It remains to show that ∂0M is pleated.

Suppose that ∂0M is not pleated. Then ∂0M contains an extremal point, say p. By Definition 3.6, there exists a 
half-ball B in H3 (resp. H3

θ0
for some θ0 ∈ (0, π)) if p is a regular (resp. singular) point, and an isometric embedding 

ϕ : B → M sending the center O of B to p, such that ϕ(B̄) ∩ ∂0M = {p}. Let P be the totally geodesic disk contained 
in the boundary ∂B of B and let n be the unit vector orthogonal to P at O and pointing outward of B . Denote by 
B ′ the open ball in H3 (resp. H3

θ0
) containing B with the same radius. We consider a geodesic plane in B ′, called Pε , 

which is orthogonal to the geodesic γ (t) = expO tn at γ (ε) for sufficiently small ε > 0. Let U be a neighborhood of 
O in B ′ with boundary containing Pε . Let C(U) be the set consisting of the subsets of U which can be isometrically 
embedded in M . Then C(U) has a unique maximal element, say W . Denote by M̄ the quotient of the disjoint union 
of M and U by identifying W to a subset of M under an isometric embedding from W to M . Note that we can choose 
ε above small enough such that the metric boundary of M̄ is concave. By construction, M̄ is a hyperbolic manifold 
with particles and has a concave metric boundary which is orthogonal to the singular locus. It is a non-trivial concave 
extension of M . This contradicts that M is a maximal concave extension. �
3.6. The construction of hyperbolic ends in HEθ from meromorphic quadratic differentials in T ∗T�,θ

Proposition 3.9. Let q ∈ T ∗
c T�,θ with c ∈ T�,θ . Then there exists a unique hyperbolic end with particles M ∈ HEθ

which admits a complex projective structure σ on ∂∞M in the conformal class c, such that the Schwarzian derivative 
S(φ) of the natural conformal map φ : (∂∞M, σ) → (∂∞M, σF ) is q .

Proof. We construct a hyperbolic end with particles M from the given quadratic differential q on � (with respect to 
the conformal structure c) in the following two steps.

Step 1: First we construct a hyperbolic manifold with the prescribed particles M0 which is homeomorphic to 
� ×R≥0 with a concave metric boundary ∂0M0, by using the given data q and c.

Let I ∗ be a hyperbolic metric with the prescribed cone singularities in the conformal class c. Let II∗0 = Re q be the 
real part of q and II∗ = 1

2I ∗ + II∗
0. Let B∗ = (I ∗)−1II∗ and III∗ = I ∗(B∗•, B∗•).

Let M0 be the set � × [r0, +∞) with the metric

g0 = dr2 + 1

2
(e2r I ∗ + 2II∗ + e−2r III∗),

where r0 is to be determined. We claim that M0 is a hyperbolic manifold with particles if we choose r0 large enough. 
Denote Ir = 1

2 (e2r I ∗ + 2II∗ + e−2r III∗). Then we have

Ir = 1

2
I ∗((erE + e−rB∗)•, (erE + e−rB∗)•),

IIr = 1

2

dIr

dr
= 1

2
I ∗((erE + e−rB∗)•, (erE − e−rB∗)•)

Denote Br = (erE + e−rB∗)−1(erE − e−rB∗). We show that (Ir , Br) satisfies the following conditions:

• Br is self-adjoint for Ir : Ir(Br•, •) = Ir (•, Br•). This follows directly from the fact that B∗ is self-adjoint for I ∗
(since II∗

0 is the real part of the quadratic differential q).
• (Ir , Br) satisfies the Gauss equation for surfaces embedded in H3: KIr = −1 + detBr , where KIr is the sectional 

curvature of Ir . Indeed, by the definition of Ir and Proposition 2.18,

KIr = KI∗

det( 1√
2
(erE + e−rB∗))

= −2

e2r + trB∗ + e−2r detB∗ .

Note that B∗ = (I ∗)−1II∗ = 1
2E + (I ∗)−1II∗

0 and (I ∗)−1II∗
0 is traceless. We have trB∗ = 1 and

−1 + detBr = −2 trB∗

e2r + trB∗ + e−2r detB∗ = −2

e2r + trB∗ + e−2r detB∗ = KIr .
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• (Ir , Br) satisfies the Codazzi equation: d∇Ir
Br = 0, where ∇Ir is the Levi-Civita connection of Ir . Denote by ∇I∗

the Levi-Civita connection of I ∗. By Proposition 2.18,

∇Ir = (erE + e−rB∗)−1∇I∗
(erE + e−rB∗) .

It suffices to show that d∇I∗
B∗ = 0. By the definition of ∇I∗

, it can be checked that d∇I∗
I ∗ = 0. Note that 

II∗
0 = Re q with q a holomorphic quadratic differential outside the marked points. Then d∇I∗

II∗
0 = 0. Therefore, 

d∇I∗
B∗ = d∇I∗ ( 1

2E + (I ∗)−1II∗
0

) = (I ∗)−1d∇I∗
II0

∗ = 0.
• (Ir , Br ) satisfies the following equality:

Ir+s = Ir ((cosh(s)E + sinh(s)Br)•, (cosh(s)E + sinh(s)Br)•),

for all r, s > 0. This follows from a direct computation.

Denote by λ∗, μ∗ (resp. λr , μr ) the eigenvalues of B∗ (resp. Br ). By computation,

λr = er − e−rλ∗

er + e−rλ∗ , μr = er − e−rμ∗

er + e−rμ∗ .

If r0 is large enough, the eigenvalues λr0 , μr0 of (�, Ir0) are both positive. Combined with the above properties of 
(Ir , Br), this shows that M0 is a hyperbolic manifold with particles which has a concave metric boundary.

We now show that the total angle around the singular curve {pi} × [r0, +∞) of M0 is θi . It suffices to check 
that (� × {r}, Ir ) has cone singularities of angle θi at the intersection with the singular line through pi . Note that 
Ir = 1

2I ∗((erE + e−rB∗)•, (erE + e−rB∗)•). We claim that B∗ tends to 1
2E at the cone singularities. Indeed I ∗ =

ρ(z)|dz|2 with ρ(z) = e2u|z|2(
θi
2π

−1) near the cone singularity pi , while the quadratic differential q = f (z)dz2 has at 
most simple pole at pi (that is, |f (z)| ≤ O(1/|z|) near z(pi) = 0). A direct computation shows that

(I ∗)−1II∗
0 = 1

2
ρ−1(z)

⎛⎝ Ref − Imf

− Imf −Ref

⎞⎠ .

Combined with the observation that θi ∈ (0, π) and | Ref |, | Imf | ≤ |f | ≤ O(1/|z|) near z(pi) = 0, we have that 
(I ∗)−1II∗

0 tends to the zero matrix at pi . This implies that B∗ tends to 1
2E at pi . Hence, Ir tends to 1

2 (er + 1
2e−r )2I ∗

at pi , which implies that Ir has the cone singularities of the same angle θi at pi as those associated to I ∗.
Step 2: We construct the desired hyperbolic end M with particles via M0.
Indeed, by Proposition 3.8, M0 admits a unique maximal concave extension which is a hyperbolic end with parti-

cles, say M . We will show that the induced complex projective structure σ on ∂∞M satisfies the required condition.
A direct computation shows that I ∗ = 1

2e−2rGr∗(Ir + 2IIr + IIIr ) (see e.g. [20, Lemma 5.1]), where Gr is the 
Gauss map from (� × {r}, Ir ) to ∂∞M . This implies that the conformal structure induced on ∂∞M by the hyperbolic 
metric on M is c. By [20, Lemma 8.3], the real part of the Schwarzian derivative of the natural map φ : (∂∞M, σ) →
(∂∞M, σF ) is II∗

0 (note that the proof of this lemma is purely local, and therefore extends to the singular setting), 
where σ is the complex projective structure induced on ∂∞M and σF is the Fuchsian complex projective structure of 
σ . Hence, ReS(φ) = II∗

0 = Req . This implies that S(φ) = q . �
Proof of Theorem 1.1. Note that the hyperbolic end with particles in Proposition 3.9 is unique from the construction. 
Combined with Proposition 3.4 and Lemma 3.5, Theorem 1.1 follows. �
3.7. Hyperbolic ends with particles in terms of the bending data on the metric boundary

Now we consider the relation between HEθ and T�,θ ×MLp.
Let M be a hyperbolic end with particles. It follows from Remark 2.8 that ∂0M has a bending lamination, say λ.
Note that the singular lines are orthogonal to ∂0M and the total angles around the singular curves are less than π . 

The distance from the singular points in M̄ to the support L of the bending lamination is bounded away from 0. In 
particular, if x ∈ ∂0M is a singular point, then ∂0M has a local support plane at x in M̄ , say P , such that P ∩ ∂0M

contains a neighborhood of x in P .
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It follows from those facts that ∂0M can be locally isometrically embedded into a complete pleated surface in H3

(resp. a totally geodesic plane orthogonal to the singular line in H3
θi

for some θi ) away from the singular points (resp. 
near each singular point). Therefore, ∂0M carries an intrinsic hyperbolic metric, say h, with cone singularities (at the 
intersections with singular locus) of angle equal to the total angle around the corresponding singular curve. Thus we 
obtain (up to isotopy) a pair (h, λ) ∈ T�,θ ×MLp.

Proposition 3.10. The map sending a hyperbolic end with particles to (h, λ), the induced metric and measured bend-
ing lamination on its metric boundary is a bijection between HEθ and T�,θ ×MLp.

Proof. The construction above shows that the pair (h, λ) is uniquely determined by the choice of a hyperbolic end.
Conversely, we will show that given a hyperbolic metric h ∈ T�,θ and a measured lamination λ ∈MLp, there is a 

unique hyperbolic end with particles, say M , such that h and λ are the induced metric and bending lamination on ∂0M . 
The argument is similar to that in [10, Proposition 5.8] which considers the case of AdS manifolds with particles.

Denote by �̃p the universal cover of �p. We claim that h and λ determine a local isometric embedding devλ :
�̃p → H

3, which is equivariant under a homomorphism ρλ : π1(�p) → PSL2(C). Indeed, associated to λ we can 
define a bending cocycle βλ : �̃p× �̃p → PSL2(C) (see [2, Chapter 4.1] and [11, Definition II 3.5.2]), which satisfies 
the following two equalities:

βλ(x, y) ◦ βλ(y, z) = βλ(x, z),

βλ(γ x, γy) = ρ(γ )βλ(x, y)ρ(γ )−1,

where ρ : π1(�p) → PSL2(R) ≤ PSL2(C) is the holonomy representation of h.
In particular, the map devλ can be expressed in terms of βλ, that is,

devλ(x) = βλ(x0, x)I (dev(x)),

where x0 ∈ �̃p is a fixed point, dev is the developing map of h, and I is the isometric embedding of H2 into H3. We 
define ρλ : π1(�p) → PSL2(C) as

ρλ(γ ) = βλ(x0, γ x0) ◦ ρ(γ ),

for all γ ∈ π1(�p).
One can check that devλ is locally injective and it is ρλ-equivariant. Note that as the singular locus of h on �

stay away from λ, the cocycle βλ(x0, x) is trivial in π−1(Ui) for a neighborhood Ui of a marked point pi ∈ p, where 
π : �̃p → �p is the universal cover. This implies that the map devλ is conjugated to dev in π−1(Ui). Let S be the 
surface equipped with the developing map devλ and the holonomy representation ρλ. Then S admits a hyperbolic 
metric on �p with cone singularities of the same angle as h at p, and bending along λ (in terms of the local chart in 
H

3 given by (devλ, ρλ)-data) with the bending angle equal to the corresponding transverse measure. Let us denote by 
Sr the regular set of S and by S̃r the universal cover of Sr . Then devλ : S̃r → H

3 is a ρλ-equivariant developing map 
of Sr . Now we consider the normal exponential map, called exp, of devλ(S̃r ) ⊂ H

3.

exp : N(devλ(S̃r )) →H
3,

where N(devλ(S̃r )) is the set of the pairs (x, v) with x ∈ devλ(S̃r ) and v a locally concave-directed vector at x
which is orthogonal to a totally geodesic disk centered at x and supporting on devλ(Ũx̃) ⊂ H

3, here Ũx̃ ⊂ S̃r is a 
neighborhood of a point x̃ ∈ dev−1

λ (x) such that devλ|Ũx̃
is homeomorphic. Define exp(x, v) = expx(v). Note that 

devλ(S̃r ) is locally concave in H3 and then exp is well-defined and indeed a local homeomorphism by construction. 
Hence devλ(S̃r ) inherits a natural metric from the hyperbolic metric on H3.

Note also that the holonomy representation ρλ for Sr induces a natural action on N(devλ(S̃r )): for any (x, v) ∈
N(devλ(S̃r )) and γ ∈ π1(Sr), we define ρλ(γ )(x, v) = (ρλ(γ )(x), ρλ(γ )∗(v)), where ρλ(γ )∗(v) is the put-forward 
vector at ρλ(γ )(x) by ρλ(γ ) of the vector v at x. Now we define an identification on exp(N(devλ(S̃r ))) by identifying 
exp(x, v) with exp(x′, v′) if (x, v) is related to (x′, v′) by an action induced by ρλ(γ ) for some γ ∈ π1(Sr). One 
can check that the quotient of exp(N(devλ(S̃r ))) by this identification is a hyperbolic manifold homeomorphic to 
Sr × (0, +∞) (since devλ is locally homeomorphic and ρλ-equivariant, exp is locally homeomorphic, and the induced 
metric on exp(N(devλ(S̃r ))) is invariant under this identification).
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Let M be the metric completion of this quotient manifold. Observe that for each small loop γi ∈ π1(Sr) around the 
marked point pi , ρλ(γi) is an elliptic element in PSL2(C) of angle θi up to conjugation. Note also that the distance 
from the support of λ to the cone singularities of S is bounded away from 0. Then the small neighborhood of the 
line li = {pi} × (0, +∞) in M is locally modeled on H3

θi
, thus li is a singular curve in M with cone singularities of 

angle θi at each point. Therefore, M is a hyperbolic end with particles in HEθ , which has a concave pleated boundary 
(identified to S) with the induce metric h and the bending lamination λ.

Let f : T�,θ × MLp → HEθ be the map constructed above. It follows from the construction that f is well-
defined, with the inverse as exactly the induced hyperbolic metric and bending lamination on ∂0M . This completes 
the proof. �
3.8. Comparing parameterizations of HEθ

We now sum up the various parameterizations of the space of hyperbolic ends with particles, and the relations 
among them.

Proposition 3.11. The following maps are homeomorphisms.

• The map f : T�,θ ×MLp → HEθ sending (m, l) to the unique hyperbolic end with particles such that the induced 
metric and measured bending lamination on the metric boundary are m and l, see Proposition 3.10,

• the map f1 : HEθ → CPθ sending a hyperbolic end with particles to the complex projective structure at infinity, 
see Proposition 3.4,

• the map f2 : CPθ → T ∗T�,θ sending a complex projective structure to the Schwarzian derivative of its map to 
the Fuchsian complex projective structure with the same underlying complex structure, see Lemma 3.5,

• the map f3 : T ∗T�,θ → HEθ reconstructing a hyperbolic end with particles from the data of a hyperbolic metric 
and a traceless Codazzi tensor on the boundary at infinity, see Proposition 3.9.

Moreover, the triangle on the right-hand side of Fig. 2 commutes.

Proof. It is sufficient to show the continuity of the maps f , f −1, f1, f2, f3 in the following diagram.

T�,θ ×MLp
f HEθ

f1 CPθ

f2

T ∗T�,θ

f3

Fig. 2. A diagram showing the relations among several spaces related to HEθ .

Note that the induced metric and the bending lamination on ∂0M of a hyperbolic end M with particles are com-
pletely determined by the intrinsic geometry of M . Conversely, a hyperbolic end with particles is obtained as the 
image under the exponential map exp (defined before Proposition 3.10) of the normal bundle NS, which depends 
continuously on the (devλ, ρλ)-data determined by the bending data (h, λ) ∈ T�,θ ×MLp. Therefore, f and f −1 are 
naturally continuous.

As for the map f1, observe that the complex projective structure induced on ∂∞M is determined by the canonical 
complex projective structure on ∂∞Mr (considered as an extended 

(
PSL2(C), ∂∞H

3
)
-structure on ∂∞Mr , which 

depends continuously on the 
(
PSL2(C), H3

)
-structure on Mr ) and the asymptotic geometry near the endpoints at 

infinity of the singular curves in M (see Lemma 3.3, which ensures that the complex projective structure at infinity 
has cone singularities of angle θi at the endpoint at infinity of the singular curve {pi} × (0, +∞)). Hence, f1 is 
naturally continuous.

A well-known fact in complex analysis says that uniformly convergent holomorphic maps have uniformly conver-
gent derivatives of arbitrary order (on compact subsets). Note also that the natural maps from a complex projective 
structure with cone singularities to the corresponding Fuchsian complex projective structure extend conformally to the 
marked points (with respect to the complex charts) and there is a natural holomorphic local diffeomorphism from the 
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CP 1-chart in Cθi
to the complex chart in C at the singular point pi (see e.g. Lemma 3.5). Therefore, the Schwarzian 

derivative induces a continuous map on the space of the natural conformal maps from a complex projective structure σ
with cone singularities to the corresponding Fuchsian complex projective structure σF . Moreover, the sequence of nat-
ural conformal maps ϕn : (�, σn) → (�, (σn)F ) converges to the natural conformal map ϕ : (�, σ) → (�, σF ) (with 
respect to the CP 1-charts) as σn converges to σ in CPθ (under the topology defined using development-holonomy 
pairs). It follows that f2 is continuous.

Recall the proof of Proposition 3.9 that the geometry of the obtained hyperbolic end M with particles from a 
given quadratic differential q ∈ T ∗T�,θ is completely determined by the first and second fundamental form I∗, II∗
(defined by q) on ∂∞M . More precisely, I ∗ is the hyperbolic metric with cone singularities of fixed angles in the 
conformal class of the underlying conformal structure of q and II∗ = 1

2I ∗ + Re q . This implies that I∗ and II∗ depend 
continuously on q ∈ T ∗T�,θ . As a result, we obtain the continuity of f3.

Combining the above results, any two spaces in Fig. 2 are homeomorphic. �
3.9. The grafting map on hyperbolic surfaces with prescribed cone singularities

In non-singular case, it was proved by Thurston that the grafting map Gr : T ×ML → CP is a homeomorphism 
(see e.g. [15,21,29]), where T denotes the Teichmüller space of a closed oriented surface S of genus at least 2, ML
denotes the space of measured laminations on S and CP is the space of complex projective structures on S, up to 
isotopy. Here we generalize this result to hyperbolic surfaces with cone singularities of angles less than π by showing 
that the grafting map is indeed the composition of the maps f and f1 in Proposition 3.11.

Recall that for a hyperbolic surface with cone singularities pi of angles θi ∈ (0, π), each pi has a neighborhood of a 
radius ri = r(θi) > 0 (depending only on θi) which is disjoint from any simple closed geodesic (see [14, Theorem 3]). 
Note also that the weighted multicurves are dense in MLp. Then the distance from the support of any measured 
laminations in MLp to {p1, ..., pn0} has a uniformly positive lower bound. Therefore, the grafting operation can be 
naturally generalized to the case with cone singularities.

Let S be a hyperbolic surface with the metric h ∈ T�,θ and let tγ be a t -weighted simple closed geodesic on S. 
We perform a grafting operation: cut S open along γ and glue a cylinder γ × [0, t] along the cutting on both side. 
For a disjoint union ∪i tiγi of weighted simple closed geodesics, we can also perform this operation for each weighted 
geodesic tiγi . Note that this operation is done outside the union of the neighborhood Uri of each singular point pi on 
S with a radius ri . As the non-singular case (see e.g. [15, Section 4.1]), we can consider the corresponding operation 
in the universal cover of the regular set of S. It is not hard to see that the obtained surface admits a complex projective 
structure with prescribed cone singularities.

For non-singular case, Thurston has shown that grafting along weighted simple closed curves extends continuously 
to arbitrary measured laminations. Note again that the distance from the support of any measured lamination to the 
cone points is bounded away from 0. Under a limit process, we can also consider the grafting along a measured 
lamination λ ∈ MLp as the limit of the obtained complex projective structure under the grafting operation along 
∪i tiγi with 

∑
i tiγi → λ in MLp (note that this is independent of the choice of ∪itiγi ).

Definition 3.12. Let Grθ : T�,θ × MLp → CPθ be the map associates to (h, λ) the complex projective structure 
obtained by the above grafting operation on a hyperbolic surface (�, h) along λ. We call it the grafting map.

Lemma 3.13. Grθ = f1 ◦ f .

Proof. It suffices to show that for each hyperbolic end M ∈ HEp, the complex projective structure induced on ∂∞M

can be obtained as the image of the pair (h, λ) under the grafting map Grθ , where h and λ are the induced hyperbolic 
metric and the bending lamination on ∂0M , respectively. Indeed, we only need to prove this for the case that λ is a 
simple closed geodesic γ with the weight α > 0 which records the bending angle at γ .

Let S = ∂0M and consider the normal exponential map exp : N1S × (0, +∞) → M defined in Lemma 2.6. For 
each r > 0, the subset exp(N1(S \ γ ) × {r}) of the equidistant surface Sr at distance r from S has induced metric 
Ir = cosh2(r)h for all x ∈ S \ λ. Moreover, the image exp(N1(γ ) × {r}) is an annulus Ar embedded in Sr . By 
computation, Ar has two boundary components of length ar = cosh(r)�γ (h) and the shortest distance between these 
two boundary components is br = sinh(r)α.
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Therefore, for x ∈ S \λ, the induced metric Ir of the set exp(N1(S \γ ) ×{r}) satisfies that e−2r Ir → h as r → +∞. 
On the other hand, the ration (or module) of Ar , as r → +∞, satisfies that

ar

br

= cosh(r)

sinh(r)

�γ (h)

α
→ �γ (h)

α
= Mod(Aγ ),

where Aγ = γ × [0, α] is the annulus replacing γ in the grafting operation and Mod(Aγ ) is the module of Aγ . 
Therefore, the complex projective structure on ∂∞M is Grθ (h, λ). �
Proof of Theorem 1.2. This follows from Proposition 3.11 and Lemma 3.13. �
4. De Sitter spacetimes with particles and complex projective structures with cone singularities

In this section, we consider the “dual” manifolds of hyperbolic ends with particles, that is, future-complete convex 
GHM de Sitter spacetimes with particles (see Definition 2.11). We describe this dual relation in terms of the complex 
projective structures induced on the boundary at infinity of either of these two mutually dual manifolds.

It is interesting to ask whether every future-complete GHM de Sitter spacetime with particles contains a strictly 
future-convex spacelike surface. This relates closely to a question posed in [18, Section 6] whether every future-
complete GHM de Sitter spacetime with particles contains a constant mean curvature spacelike surface, and a question 
asked in [7] whether every future-complete GHM flat spacetime with particles contains a uniformly future-convex 
spacelike surface.

4.1. The complex projective structure at infinity of a de Sitter spacetime Md ∈DSθ

Recall that every de Sitter spacetime in DSθ is future-complete. We denote by ∂∞Md the boundary at infinity of a 
de Sitter spacetime Md ∈DSθ and will show that ∂∞Md admits a complex projective structure with cone singularities 
of the same angles as the particles.

The model space Wα . Let α > 0 and let �0 be a fixed, future-oriented complete timelike geodesic in DS3. Denote 
by U the universal cover of the complement of �0 in DS3 and denote by W the completion of U , such that W \ U

is canonically identified with �0, which is called the singular set of W . We define Wα as the quotient of W by the 
rotation of angle α around �0. The image of the singular set of W under this quotient is called the singular set of Wα .

Let Md be a future-complete convex GHM de Sitter spacetime with particles. It is clear that each singular point 
x of Md has a neighborhood isometric to a subset of Wα with α equal to the total angle around the singular curve 
through x. Now we describe the geometry property of Md near the endpoints at infinity of the singular curves in Md

by using the model Wα , see the following lemma. Since Md contains a strictly future-convex spacelike surface, with 
an alternative version of Lemma 2.6 for the de Sitter case with particles, the argument for the hyperbolic case with 
particles is adapted to the de Sitter case.

Lemma 4.1. For each point pi ∈ ∂∞Md which is the endpoint at infinity of a singular curve in Md , pi has a neigh-
borhood Ui in Md isometric to a neighborhood of the endpoint at infinity of �0 in Wθi

which lies on S2+, where θi is 
the total angle around that singular curve.

Proof. Now we prove the lemma in the following four steps:
Step 1: Let Sd ⊂ Md be a strictly future-convex spacelike surface and let NSd be the space of future-directed 

vectors normal to Sd (note that at a singular point x ∈ Sd , the “normal” vector is directed along the singular curve 
through x). Given v = (x, n) ∈ NSd , we denote by exp(v) ∈ Md the point γ (1), where γ : [0, 1] → Md is the geodesic 
such that γ (0) = x and γ ′(0) = n, if it exists. This defines a map exp from a subset of NSd to Md .

Step 2: We claim that the map exp : NSd → Md is well-defined on NSd and it is a homeomorphism onto its 
image. Note that Sd is a Cauchy surface in Md and every geodesic starting in the direction of NSd is timelike, then 
there is no geodesic segment in the future of Sd connecting two points of Sd in the directions of NSd . Applying an 
analogous argument used in Lemma 2.6 for hyperbolic case, we have the claim.

Step 3: The exponential map exp∞ : NSd → ∂∞Md is a homeomorphism, where exp∞ is defined as the equiva-
lence class of the geodesic ray which is the fiber of NSd over x ∈ Sd . This follows directly from Step 2.
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Step 4: By Step 3, for each point pi ∈ ∂∞Md which is the endpoint at infinity of a singular curve in Md , the 
singular curve is unique and we denote it by li . Assume that this singular curve li intersects Sd at xi . Let Fi be the 
fiber of NSd over xi and let Hi be a small neighborhood of Fi in NSd . Consider Ui = exp(Hi). Note that Md is 
locally modeled on Wθi

near the singular curve li (where li is identified as the singular set �0 in Wθi
and θi is the 

total angle around li). By the definition of de Sitter metrics with particles, Ui contains a cylinder of exponentially 
expanding radius around li along the future-direction. This implies the desired result. �

Note that the regular set Md
r of Md has a (PSL2(C), DS3)-structure and it is future-complete, we can define the 

boundary at infinity of Md
r , denoted by ∂∞Md

r , as for the hyperbolic case in Proposition 3.4. Moreover, ∂∞Md
r carries 

a canonical complex projective structure. Combined with the geometric property of Md near the endpoints at infinity 
of the singular curves, as presented in Lemma 4.1, we have the following proposition.

Proposition 4.2. Let Md ∈ DSθ be a future-complete convex GHM de Sitter spacetime with particles. Then the bound-
ary at infinity ∂∞Md is endowed with a complex projective structure with cone singularities of angle θi at the pi .

4.2. The construction of de Sitter spacetimes in DSθ from complex projective structures in CPθ

To construct a convex GHM de Sitter spacetime with particles from a complex projective structure with cone 
singularities, we give the following result which ensures the existence and the uniqueness (up to isometry) of the 
maximal extension of a convex GH de Sitter spacetime with particles. This can be proved by adapting verbatim the 
argument given for the anti-de Sitter case in [5, Proposition 6.24].

Proposition 4.3. Let Md
0 be a convex GH de Sitter spacetime with particles. Then there exists a unique (up to isometry) 

maximal extension of Md
0 , called Md , in which Md

0 can be isometrically embedded.

Proposition 4.4. Let σ ∈ CPθ be a complex projective structure with cone singularities. Then there is a unique future-
complete convex GHM de Sitter spacetime with particles Md ∈ DSθ , such that ∂∞Md is endowed with the complex 
projective structure σ .

Proof. By Lemma 3.5, the Schwarzian derivative of the conformal map id : (�p, σ) → (�p, σF ) is a meromorphic 
quadratic differential q in T ∗

c T�,θ , where c is the common underlying conformal structure of σF and σ .
Now we use q to construct a future-complete convex GHM de Sitter spacetime Md with particles in the following 

two steps, as in Proposition 3.9 for the hyperbolic case.
Step 1: First we construct a future-complete GH de Sitter spacetime Md

0 with the prescribed particles which is 
homeomorphic to � ×R≥0.

As in the hyperbolic case (see the proof of Proposition 3.9), we use the same data at infinity. Let I ∗ be a hyperbolic 
metric with the prescribed cone singularities in the conformal class c. Recall the notations that II∗0 = Re q , II∗ =
1
2I ∗ + II∗

0, B∗ = (I ∗)−1II∗ and III∗ = I ∗(B∗•, B∗•).
Let Md

0 be the set � × [t0, +∞) with the metric

gd
0 = −dt2 + 1

2
(e2t I ∗ − 2II∗ + e−2t III∗),

where t0 is to be determined. We claim that Md
0 is a convex GH de Sitter spacetime with particles if we choose t0

large enough. Denote I d
t = 1

2 (e2t I ∗ − 2II∗ + e−2t III∗). Then we have

I d
t = 1

2
I ∗((etE − e−tB∗)•, (etE − e−tB∗)•),

IId
t = 1

2

dId
t

dt
= 1

2
I ∗((etE − e−tB∗)•, (etE + e−tB∗)•).

Denote Bd
t = (etE − e−tB∗)−1(etE + e−tB∗). Similarly as the hyperbolic case (see Proposition 3.9), one can 

check that (I d
t , Bd

t ) satisfies the following conditions:
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DSθ

g1

T ∗T�,θ

g3

CPθ
g2

Fig. 3. A diagram showing the relations among the spaces related to DSθ .

• Bd
t is self-adjoint for Id

t : I d
t (Bd

t •, •) = I d
t (•, Bd

t •). This follows from the fact that II∗ is self-adjoint for I∗ (since 
II∗

0 is the real part of a quadratic differential q).
• (I d

t , Bd
t ) satisfies the Gauss equation for surfaces in dS3: KId

t
= 1 − detBd

t , where KId
t

is the sectional curvature 

of I d
t .

• (I d
t , Bd

t ) satisfies the Codazzi equation: d∇Id
t
Bd

t = 0, where ∇Id
t is the Levi-Civita connection of I d

t .
• (I d

t , Bd
t ) satisfies the following equality:

I d
t+s = I d

t ((cosh(s)E + sinh(s)Bd
t )•, (cosh(s)E + sinh(s)Bd

t )•),

for all t, s > 0. This follows from a direct computation.

Denote by λ∗, μ∗ (resp. λd
t , μd

t ) the eigenvalues of B∗ (resp. Bd
t ). By computation,

λd
t = et + e−t λ∗

et − e−t λ∗ , μd
t = et + e−tμ∗

et − e−tμ∗ .

If t0 is large enough, the eigenvalues λd
t0

, μd
t0

of (� × {t0}, I d
t0
) are both positive. Let the positive direction of t be 

the future direction. Combined with the above properties of (I d
t , Bd

t ), this shows that Md
0 is a future-complete convex 

GH de Sitter spacetime with particles.
From the argument in Proposition 3.9, we have that B∗ tends to 1

2E at each cone singularity pi . Therefore, I d
t

tends to 1
2 (et − 1

2e−t )2I ∗ at pi . This shows that the total angle around the singular curve {pi} ×[t0, +∞) of Md
0 is θi .

Step 2: We construct the desired de Sitter spacetime Md with particles via Md
0 .

Indeed, by Proposition 4.3, Md
0 admits a unique maximal extension, say Md . We will show that the induced 

complex projective structure on ∂∞Md satisfies the required condition.
A direct computation shows that I ∗ = 1

2e−2tGd
t ∗(I d

t + 2IId
t + IIId

t ), where Gd
t is the Gauss map from (� ×{t}, Id

t )

to ∂∞Md . This implies that the conformal structure induced on ∂∞Md by the de Sitter metric on Md is c. Note that 
the expressions of the first, second and third fundamental forms of the surfaces �t in the foliation near the boundary 
at infinity of Md can be obtained by replacing the shape operator B∗ in Proposition 3.9 by −B∗. An adaption of the 
argument for the hyperbolic case (see [20, Lemma 8.3]) shows that the real part of the Schwarzian derivative of the 
natural map φ : (∂∞Md, σd) → (∂∞Md, σd

F ) is II∗
0, where σd is the complex projective structure induced on ∂∞Md

and σd
F is the Fuchsian complex projective structure of σd . Hence, ReS(φ) = II∗

0 = Req . This implies that S(φ) = q . 
Note also that σd

F = I ∗ = σF , then σd = σ . This implies that the complex projective structure induced on ∂∞Md is 
exactly σ . �

For convenience, we give the commutative diagram in Fig. 3, which shows the relations among the spaces related 
to DSθ and the following maps g1, g2, g3 are all homeomorphisms (see e.g. Proposition 3.11).

• the map g1 : DSθ → CPθ sending a de Sitter spacetime with particles to the complex projective structure at 
infinity, see Proposition 4.2,

• the map g2 defined to be the map f2 in Proposition 3.11,
• the map g3 : T ∗T�,θ → DSθ reconstructing a de Sitter spacetime with particles from the data of a hyperbolic 

metric and a traceless Codazzi tensor on the boundary at infinity, see Proposition 4.4.

Proof of Theorem 1.4. This follows from Proposition 4.2 and Theorem 4.4. �
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4.3. The duality between HEθ and DSθ

Combining Theorem 1.1 and Theorem 1.4, we can define a natural map, say δ, which is a homeomorphism from 
HEθ to DSθ sending a hyperbolic end with particles to the unique future-complete convex GHM de Sitter spacetime 
with the same complex projective structure at infinity.

Let M ∈ HEθ be a non-degenerate hyperbolic end with particles, and let Md ∈ DSθ be the dual future-complete 
convex GHM de Sitter spacetime with particles. We also describe a duality between closed strictly concave surfaces 
in M and closed strictly future-convex surfaces Sd in Md .

Let S ⊂ M be a closed, strictly concave surface. We define a dual surface Sd ⊂ Md of S, as the surface satisfying 
the following properties:

• Sd is a strictly future-convex spacelike surface in Md .
• There is a unique diffeomorphism u : S → Sd such that u∗Id = III and u∗IIId = I , where I, III are the induced 

metric and third fundamental form on S, and Id and IIId are the induced metric and third fundamental form on Sd .

Conversely, given a closed, strictly future-convex spacelike surface Sd ⊂ Md , we can also define a dual surface 
S ⊂ M of Sd , in an analogous way as above. It remains to show that the definition of the duality for surfaces is 
well-defined. By observation, it suffices to show the existence and uniqueness of the dual surface Sd ⊂ Md of a 
closed, strictly concave surface S in a hyperbolic end M with particles defined above. Equivalently, it suffices to show 
Theorem 1.5.

To show Theorem 1.5, it is convenient to clarify the relation between hyperbolic ends with particles (resp. convex 
GHM de Sitter spacetimes with particles) and the data at infinity. We will then see in the next subsection that the same 
description applies in the de Sitter case.

4.4. Hyperbolic ends with particles and the data at infinity

4.4.1. The data at infinity obtained from an equidistant foliation near the boundary at infinity of M ∈ HEθ

Let M be a hyperbolic end with particles and let S be a strictly concave surface in M , with the induced metric 
I , the shape operator B , and the second fundamental form II. Consider an equidistant foliation (Sr)r>0, with Sr the 
equidistant surface obtained at distance r from S along the orthogonal geodesics on the concave side of S. Define the 
data at infinity (I ∗, II∗) as follows:

I ∗ = 1

2
e−2rGr∗(Ir + 2IIr + IIIr ),

II∗ = 1

2
e−2rGr∗(Ir − IIIr ),

(2)

where Ir , IIr , IIIr are respectively the induced metric, second and third fundamental forms on Sr in M , while Gr is 
the Gauss map from Sr to the boundary at infinity ∂∞M of M . One can check by direct computation that the data 
(I ∗, II∗) defined above is independent of r .

It is not hard to check that (see e.g. [20, Remark 5.4 and Remark 5.5]) the data (I∗, II∗) satisfies the Codazzi 
equation and a modified version of the Gauss equation for surfaces embedded in H3:

d∇I∗
II∗ = 0,

trI∗ II∗ = −KI∗ ,
(3)

where ∇I∗
is the Levi-Civita connection of I ∗ and KI∗ is the Gauss curvature of I ∗.

Conversely, Ir , IIr , and the shape operator Br of Sr can be rewritten by using the data at infinity (I ∗, II∗) in the 
following way (see [20, Lemma 5.6]).

Ir = 1

2
I ∗((erE + e−rB∗)•, (erE + e−rB∗)•),

IIr = 1

2
I ∗((erE + e−rB∗)•, (erE − e−rB∗)•),

B = (erE + e−rB∗)−1(erE − e−rB∗),

(4)
r
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where B∗ = (I ∗)−1II∗.

4.4.2. The hyperbolic end with particles determined by a particular couple on �
Let (I ′ ∗, II′ ∗) be a couple with I ′ ∗ a Riemannian metric on �, and II′ ∗ a bilinear symmetric form on T � (defined 

outside the singular locus) satisfying the following conditions, called Condition (�) for convenience.

• (I ′ ∗, II′ ∗) assumes the two equations in (3) by replacing (I ∗, II∗) with (I ′ ∗, II′ ∗).
• The determinant of II′ ∗ with respect to I ′ ∗ remains bounded.

In particular, the previous data at infinity (I ∗, II∗) obtained from (Sr)r>0 in Section 4.4.1 satisfies Condition (�). 
Denote B ′ ∗ = (I ′ ∗)−1II′ ∗. Consider the manifold � × [0, +∞) with the following metric

g0 = dr2 + I ′
r ,

where I ′
r is defined as the formula for Ir in (4) by replacing (I ∗, II∗, B∗) with (I ′ ∗, II′ ∗, B ′ ∗). By Condition (�), it can 

be checked as Step 1 in the proof of Proposition 3.9 that (I ′
r , B

′
r ) determines a hyperbolic end with particles, denoted 

by M ′, with (� × {r})r>0 an equidistant foliation near the boundary at infinity of M ′. Moreover, the data at infinity 
obtained from (� × {r})r>0 as in Section 4.4.1 is exactly the given couple (I ′ ∗, II′ ∗). This shows that the prescribed 
couple (I ′ ∗, II′ ∗) completely determines a hyperbolic end with particles.

To verify Theorem 1.5, we also need the following proposition, which follows from a particular case (i.e. the case 
of 2+1 dimensional Poincaré–Einstein manifold) of Theorem 1.9 in [28].

Proposition 4.5. Let (I ∗
1 , II∗

1) and (I ∗
2 , II∗

2) be two couples satisfying Condition (�). Then (I ∗
1 , II∗

1) and (I ∗
2 , II∗

2)

characterize the same hyperbolic end with particles if and only if they satisfy the following relation:

I ∗
2 = e2uI ∗

1 ,

II∗
2 = II∗

1 + Hess(u) − du ⊗ du + 1

2
||du||2I∗

1
I ∗

1 ,
(5)

where u is a continuous function on � and C2 function on �p. Moreover, HEθ is parameterized by the space of the 
couples satisfying Condition (�), up to the relation (5).

4.5. De Sitter spacetimes with particles and the data at infinity

4.5.1. The data at infinity obtained from an equidistant foliation near the boundary at infinity of Md ∈ DSθ

Similarly, we can define the data at infinity, called (I d∗, IId∗), of a future-complete convex GHM de Sitter space-
time with particles Md by an equidistant foliation (Sd

t )t>0, where Sd
t is the equidistant surface obtained at distance 

t from Sd along the orthogonal geodesics on the convex side of a strictly future-convex spacelike surface Sd in Md . 
Define the data at infinity (I d∗, IId∗) as follows:

I d∗ = 1

2
e−2tGd

t ∗(I
d
t + 2IId

t + IIId
t ),

IId∗ = 1

2
e−2tGd

t ∗(III
d
t − I d

t ),

(6)

here I d
t , IId

t , IIId
t are respectively the induced metric, second and third fundamental forms on Sd

t in Md , while Gd
t is 

the Gauss map from Sd
t to the boundary at infinity ∂∞Md of Md . One can check by direct computation that the data 

(I d∗, IId∗) defined above is independent of t .
It is not hard to check that the data (I d∗, IId∗) satisfies the Codazzi equation and a modified version of the Gauss 

equation for surfaces embedded in dS3 (indeed, these equations turn out to be the same as those in (3) for the hyper-
bolic case):

d∇Id∗
IId∗ = 0,

tr d∗ IId∗ = −K d∗ ,
(7)
I I
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where ∇Id∗
is the Levi-Civita connection of I d∗ and KId∗ is the Gauss curvature of I d∗.

Conversely, I d
t , IId

t , and the shape operator Bd
t of Sd

t can be rewritten by using the data at infinity (I d∗, IId∗) in the 
following way (one can check this by direct computation).

I d
t = 1

2
I d∗((etE − e−tBd∗)•, (etE − e−tBd∗)•),

IId
t = 1

2
I d∗((etE − e−tBd∗)•, (etE + e−tBd∗)•),

Bd
t = (etE − e−tBd∗)−1(etE + e−tBd∗),

(8)

where Bd∗ = (I d∗)−1IId∗.

4.5.2. The de Sitter spacetime with particles determined by a particular couple on �
Let (I ′ ∗, II′ ∗) be a couple satisfying Condition (�). In particular, the previous data at infinity (I d∗, IId∗) obtained 

from (Sd
t )t>0 in Section 4.5.1 satisfies Condition (�).

Denote B ′ ∗ = (I ′ ∗)−1II′ ∗. Consider the manifold � × [0, +∞) with the following metric

gd
0 = −dt2 + I ′

t ,

where I ′
t is defined as the formula for I d

t in (8) by replacing (I d∗, IId∗, Bd∗) with (I ′ ∗, II′ ∗, B ′ ∗). By Condition (�), 
it can be checked as Step 1 in the proof of Proposition 4.4 that (I ′

t , B
′
t ) determines a future-complete convex GHM 

de Sitter spacetime with particles, denoted by M ′ d , with (� × {t})t>0 an equidistant foliation near the boundary at 
infinity of M ′ d . Moreover, the data at infinity obtained from (� × {t})t>0 as in Section 4.5.1 is exactly the given 
couple (I ′ ∗, II′ ∗). This shows that the prescribed couple (I ′ ∗, II′ ∗) completely determines a future-complete convex 
GHM de Sitter spacetime with particles.

As a consequence, we have a result for the de Sitter case analogous to Proposition 4.5 for the hyperbolic case.

Proposition 4.6. Let (I ∗
1 , II∗

1) and (I ∗
2 , II∗

2) be two couples satisfying Condition (�). Then (I ∗
1 , II∗

1) and (I ∗
2 , II∗

2)

characterize the same future-complete convex GHM de Sitter spacetime with particles if and only if they satisfy 
the relation (5). Moreover, DSθ is parameterized by the space of the couples satisfying Condition (�), up to the 
relation (5).

Proof of Theorem 1.5. By the definition of the dual relation between M and Md (see Section 4.3) and combining 
Proposition 4.5 and Proposition 4.6, M and Md are indeed parameterized by the same data at infinity, denoted by 
(I ′ ∗, II′ ∗), which is obtained from the same complex projective structure with cone singularities induced at infinity of 
M and Md (see e.g. Proposition 3.9 and Proposition 4.4).

Note that from the given embedded strictly concave surface S ⊂ M we can construct an equidistant foliation 
(Sr)r>0 near ∂∞M . Hence, M is also characterized by the couple (I ∗, II∗), which is the data at infinity obtained 
from the foliation (Sr)r>0, as shown in Section 4.4.1. Proposition 4.5 implies that (I ∗, II∗) and (I ′ ∗, II′ ∗) satisfy the 
relation (5).

Now we construct a future-complete convex GHM de Sitter spacetime with particles, called Md
1 , by using an 

adapted embedding data, denoted by (I d, Bd), obtained from (S, I, B), where B is the shape operator of S in M , 
(I d , Bd) is defined as follows:

I d := III, Bd := B−1.

It is not difficult to check that (I d, Bd) satisfies the Codazzi–Gauss equations for surfaces embedded in dS3 (this 
follows from a computation using Proposition 2.18 and the fact that (I, B) satisfies the Codazzi–Gauss equations 
for surfaces embedded in H3). Moreover, Bd is self-disjoint for Id with positive eigenvalues. Now we consider the 
manifold � × [0, +∞), called Md

0 , with the following metric:

gd
0 = −dt2 + I d((cosh(t)E + sinh(t)Bd)•, (cosh(t)E + sinh(t)Bd)•) ,

where E is the identity isomorphism on T � and t ∈ [0, +∞). Combined with the above properties of (I d, Bd), 
it follows that Md is a future-complete convex GH dS spacetime with particles. Let Md be the (unique) maximal 
0 1
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extension of Md
0 (this is ensured by Proposition 4.3). Moreover, � × {t}, called Sd

t , is the equidistant surface in Md
1

at a distance t on the convex side from the strictly future-convex surface � × {0}, called Sd , with the induced metric 
I d and shape operator Bd .

Therefore, Md
1 has the data at infinity, called (I d∗, IId∗), which is obtained from the foliation (Sd

t )t>0 near ∂∞Md
1 . 

One can check by using the formulas (2) and (6) that (I d∗, IId∗) = (I ∗, II∗). Therefore, (I d∗, IId∗) and (I ′ ∗, II′ ∗)
satisfy the relation (5). Using Proposition 4.6 again, the manifold Md

1 characterized by (I d∗, IId∗) is the same as the 
manifold Md characterized by (I ′ ∗, II′ ∗).

Therefore, Sd is a strictly future-convex spacelike surface in Md . Since the boundary at infinity ∂∞M (resp. ∂∞Md ) 
of M (resp. Md ) can be identified as a complex projective surface with prescribed cone singularities. There is a natural 
correspondence between the points on ∂∞M and the points on ∂∞Md through the Gauss normal flow starting from 
S ⊂ M (resp. Sd ⊂ Md ). Let u := (Gd)−1 ◦ G, where Gd (resp. G) is the Gauss map from Sd (resp. S) to ∂∞Md

(resp. ∂∞M). Then u : S → Sd is a diffeomorphism (outside the singular locus) such that u∗I d = III and u∗IIId = I . 
Note that a closed, strictly concave surface in M (resp. strictly future-convex spacelike surface in Md ) is uniquely 
determined by its embedding data, the uniqueness of Sd and u follows. This completes the proof of Theorem 1.5. �
Proof of Proposition 1.6. Denote by K the Gauss curvature of a strictly concave surface S ⊂ M in Theorem 1.5 and 
denote by Kd the Gauss curvature of the dual strictly future-convex surface Sd ⊂ Md . It follows from the argument 
of Theorem 1.5 that Kd is equal to the Gauss curvature of the third fundamental form on S, that is, Kd = K/(K + 1). 
Conversely, K is equal to the Gauss curvature of the third fundamental form on Sd , that is, K = Kd/(1 − Kd). 
Therefore, K is a constant in (−1, 0) if and only if Kd is a constant in (−∞, 0), related by an equality Kd =
K/(K + 1). This shows Proposition 1.6. �
5. Parametrization of HEθ by T�,θ ×T�,θ in terms of constant curvature surfaces

In this section, we will prove Theorem 1.3 by parameterizing HEθ in terms of constant curvature surfaces. We 
consider hyperbolic manifolds with particles homeomorphic to � ×R>0, with a metric boundary orthogonal to the 
singular locus. Moreover, the surfaces we consider in a hyperbolic manifold with particles are assumed to be incom-
pressible embedded closed surfaces (homeomorphic to �) and orthogonal to the singular curves. In order to define the 
parameterization map, we first give the following lemma.

5.1. The definition of the map φK

Lemma 5.1. Let K ∈ (−1, 0) and let (h, h′) ∈ Mθ−1 × Mθ−1 be a pair of normalized metrics. Then there exists a 
unique hyperbolic end M with particles which contains a surface of constant curvature K , with the induced metric 
I = (1/|K|)h and the third fundamental form III = (1/|K∗|)h′, where K∗ = K/(1 + K).

Proof. Let b : T � → T � be the bundle morphism associated to (h, h′) by Definition 2.16, so that h′ = h(b•, b•). 
Let I = (1/|K|)h. We equip � with the metric I and consider a bundle morphism B : T � → T �, which is defined 
by B = √

1 + Kb. By the properties of h and b, it follows that

• (�, I ) has constant curvature K .
• B is self-adjoint for I with positive eigenvalues.
• B satisfies the Codazzi equation: d∇I

B = 0, where ∇I is the Levi-Civita connection of I .
• B satisfies the Gauss equation: K = −1 + det(B).

Consider the manifold � × (−ε, +∞) with the following metric (here ε > 0 is a sufficiently small number):

g0 = dt2 + I ((cosh(t)E + sinh(t)B)•, (cosh(t)E + sinh(t)B)•) ,

where E is the identity isomorphism on T � and t ∈ (−ε, +∞). One can check that � × (−ε, +∞) endowed with 
the metric g0 is a hyperbolic manifold with particles, denoted by M0, which has a concave metric boundary (note 
that B has positive eigenvalues, then � × {0} with the induced metric is strictly concave and we can construct such a 
manifold by taking ε small enough), and each line {pi} × (−ε, +∞) corresponds to a singular curve, around which 
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the total angle is θi . Furthermore, for each t ∈ (−ε, +∞), the surface � × {t} is the equidistant surface at an oriented 
distance t from � × {0}, where t > 0 corresponds to the concave side of � × {0}.

By Proposition 3.8, there exists a unique maximal concave extension M of M0, which is a hyperbolic end with 
particles, such that the metric on M restricted to the subset � × (−ε, +∞) is exactly g0. In particular, M contains 
a concave surface of constant curvature K (which is orthogonal to the singular curves) at � × {0}, with the induced 
metric I = (1/|K|)h and the third fundamental form

III = I (B•,B•) = 1

|K|h(
√

1 + Kb•,
√

1 + Kb•) = 1

|K∗|h
′,

where K∗ = K/(1 + K). This shows the existence of the required manifold M . The uniqueness follows directly from 
the constrain conditions of the hyperbolic end with particles. �

It can be checked as Lemma 3.3 in [12] that for any (τ, τ ′) ∈ T�,θ ×T�,θ , if (h, h′) and (h1, h′
1) are two normalized 

representatives of (τ, τ ′), then the hyperbolic end with particles associated to (h, h′) and (h1, h′
1), as described in 

Lemma 5.1, are isotopic. Now we are ready to give the definition of the parametrization map φK .

Definition 5.2. For any K ∈ (−1, 0), define the map φK : T�,θ × T�,θ → HEθ by assigning to an element (τ, τ ′) ∈
T�,θ × T�,θ the isotopy class of the hyperbolic end with particles satisfying the property prescribed in Lemma 5.1.

We show that the map φK is a homeomorphism, as stated in the following proposition.

Proposition 5.3. For any K ∈ (−1, 0) and θ = (θ1, ..., θn0) ∈ (0, π)n0 , the map φK : T�,θ × T�,θ → HEθ is a home-
omorphism.

The proof will be given below, after some preliminary lemmas and propositions.

5.2. The injectivity of the map φK

We prove this property by applying the Maximum Principle outside the singular locus and a specialized analysis 
near cone singularities. The idea is similar to that given in [12, Section 3.2] for the case of AdS manifold with particles. 
Indeed, this argument is applicable to two concave surfaces which behave “umbilically” (i.e. the limits of the principal 
curvatures tend to be the same) at singular points and satisfy the property that the supremum of the Gauss curvatures 
over all the points of one surface is less than the infimum of those of the other surface (see Lemma 5.7 for more 
details).

Let M ∈ HEθ be a hyperbolic end with particles. Let S ⊂ M be a concave surface of constant curvature 
K ∈ (−1, 0). Consider the minimal Lagrangian map (see Corollary 2.15) associated to two hyperbolic metrics 
|K|I, |K∗|III ∈ Mθ−1, where K∗ = K/(1 + K), and I (resp. III) is the first (resp. third) fundamental form of S. 
By the last statement of Proposition 2.14, both principal curvatures on S tend to k = √

1 + K at the intersection pi

with the singular curve li in M for i = 1, ..., n0.
The following theorem is an alternative version of the Maximum Principle Theorem (see e.g. [3, Lemma 2.3], [12, 

Theorem 3.10]) for the case of hyperbolic ends with particles.

Theorem 5.4 (Maximum Principle). Let M be a hyperbolic end with particles. Let S and S′ be two concave surfaces 
in M . Assume that S and S′ intersect at a regular point x, and assume that S′ is contained on the concave side of S in 
M . Then the product of the principal curvatures of S′ at x is smaller than or equal to that of S.

To show the injectivity of φK , we first state the following two lemmas, which follow from a direct computation.

Lemma 5.5. Let M be a hyperbolic end with particles and let S be a concave surface in M . Consider a map ψt : S →
M defined by ψt(x) = expx(t · nx), where nx is the ∂∞M-directed unit normal vector at x of S in M . Then for each 
regular point x ∈ S, we have
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(1) ψt is an embedding in a neighborhood of x for all t > 0.
(2) The principal curvatures of ψt(S) at the point ψt(x) are given by

λt (ψt (x)) = λ(x) + tanh(t)

1 + λ(x) tanh(t)
, μt (ψt (x)) = μ(x) + tanh(t)

1 + μ(x) tanh(t)
,

where λ(x) and μ(x) are the principal curvatures of S at x.
(3) Fix x ∈ S, if λ(x)μ(x) ∈ (0, 1), then F(t) = λt (ψt (x)) · μt(ψt (x)) is strictly increasing in (0, +∞).

Lemma 5.6. Let M be a hyperbolic end with particles. Let S, S′ be two concave surfaces in M . Assume that S and 
S′ intersect at a singular point x such that the limits of both principal curvatures of S at x are equal to k > 0, and 
the limits of both principal curvatures of S ′ at x are equal to k′ > 0. If there exists a neighborhood U of x in S and a 
neighborhood U ′ of x in S′ such that U ′ is on the concave side of U , then k′ ≤ k.

Let S be a concave surface in a hyperbolic end M with particles. Define the principal curvatures at a singular point
x ∈ S as the limit of the principal curvatures as the regular points converge to x. Now we give the following result by 
applying the maximum principle and the above two lemmas.

Lemma 5.7. Let M be a hyperbolic end with particles. Assume that S1 and S2 are two strictly concave surfaces in 
M such that the supremum of the Gauss curvatures over all the points on S1 is less than the infimum of the Gauss 
curvatures over all the points on S2, and the limits of both principal curvatures at singular points on S1 (resp. S2) are 
the same. Then S2 is strictly on the concave side of S1.

Proof. Denote by λi , μi the principal curvatures of Si for i = 1, 2. Denote C1 = supx∈S1
λ1(x)μ1(x) and C2 =

infx∈S2 λ2(x)μ2(x). By assumption, we have C1 < C2, and the Gauss–Bonnet formula shows that C2 < 1.
Suppose that S2 is not strictly on the concave side of S1. Note that S1 and S2 are both concave, therefore there 

exist points of S2 where the ∂∞M-directed orthogonal geodesic rays from S2 intersect the part of S1 on the concave 
side exactly once. Consider ψt : S2 → M defined by ψt(x) = expx(t ·nx), where nx is the ∂∞M-directed unit normal 
vector at x of S2 in M . Let t0 = sup{t > 0 : ψt(x) ∈ S1 for some x ∈ S2} and let St0

2 = ψt0(S2). Since S1 and S2 are 
both compact, then t0 is attained at a point x0 ∈ S2. It follows from Lemma 5.5 that St0

2 is a concave surface which 
intersects S1 at a point y0 = ψt0(x0), and it stays on the concave side of S1. Denote by λt0

2 , μt0
2 the principal curvatures 

of St0
2 .

If y0 is a regular point, combining Theorem 5.4 and Statement (3) of Lemma 5.5, we have

C2 ≤ (λ2μ2)(x0) ≤ (λ
t0
2 μ

t0
2 )(y0) ≤ (λ1μ1)(y0) ≤ C1. (9)

This contradicts that C1 < C2.
If y0 is a singular point, note that S1 and S2 behave “umbilically” at singular points, and it follows from State-

ment (2) of Lemma 5.5 that St0
2 has an “umbilical” point at y0. Applying Statement (3) of Lemma 5.5 and Lemma 5.6

we have the same inequality (9). This contradicts again that C1 < C2. Therefore, S2 is strictly on the concave side 
of S1. �

Using a similar argument as Lemma 5.7, we have the following proposition.

Proposition 5.8. Let Si, i = 1, 2 be concave surfaces of constant curvature Ki ∈ (−1, 0) in a hyperbolic end M with 
particles for i = 1, 2. Then we have the following statements:

(1) K1 < K2 if and only if S2 is strictly on the concave side of S1.
(2) K1 = K2 if and only if S1 coincides with S2.

Proof. Proof of Statement (1): First we show that K1 < K2 implies that S2 is strictly on the concave side of S1. 
Note that K1 < K2 and the constant curvature surfaces S1, S2 behave “umbilically” at singular points. This statement 
follows directly from Lemma 5.7.
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Now we prove the sufficiency, that is, if S2 is strictly on the concave side of S1, then K2 > K1. Denote St
1 =

ψt(S1). Set δ0 = sup{d(z, S2) : z ∈ S1}. Obviously, δ0 > 0. Assume that δ0 is attained at a point z0 ∈ S1 and denote 
w0 = ψδ0(z0) ∈ S2 ∩ S

δ0
1 . Discussing w0 in two cases (as a regular or singular point) as Lemma 5.7 again, we have

λ
δ0
1 (w0)μ

δ0
1 (w0) > λ1(z0)μ1(z0) = 1 + K1,

λ
δ0
1 (w0)μ

δ0
1 (w0) ≤ λ2(w0)μ2(w0) = 1 + K2.

Thus K2 > K1.
Proof of Statement (2): The sufficiency is obvious. Now we show the necessity. By assumption, K1 = K2. Set 

d1 = sup{d(x, S1) : x ∈ S2 is on the concave side of S1 or lying on S1} and d2 = sup{d(x, S2) : x ∈ S1 is on the 
concave side of S2 or lying on S2}. Note that S1 = S2 if and only if d1 = d2 = 0.

If d1 > 0, consider the surface Sd1
1 obtained by pushing S1 along orthogonal geodesics in a distance d1 in the 

positive direction. Using the argument as above, we obtain the contradiction that K1 < K2. This implies that d1 = 0.
If d2 > 0, consider the surface Sd2

2 obtained by pushing S2 along orthogonal geodesics in a distance d2 in the 
positive direction. Using the same argument as above, we obtain the contradiction that K1 > K2. This implies that 
d2 = 0. Therefore, S1 = S2. �
Proposition 5.9. For any K ∈ (−1, 0), the map φK : T�,θ × T�,θ → HEθ is injective.

Proof. Assume that (h, h′), (h1, h′
1) ∈ T�,θ × T�,θ satisfy that φK(h, h′) = φK(h1, h′

1) := M . Then M contains a 
concave surface S of constant curvature K , with the induced metric I = (1/|K|)h and the third fundamental form 
III = (1/|K∗|)h′, and also contains a concave surface S1 of constant curvature K , with the induced metric I1 =
(1/|K|)h1 and the third fundamental form III = (1/|K∗|)h′

1. By Proposition 5.8, we have S = S1. Then h = h1 and 
h′ = h′

1, which implies that (h, h′) = (h1, h′
1). �

5.3. The continuity of the map φK

The map φK relates deeply to the minimal Lagrangian maps between two hyperbolic surfaces with cone singular-
ities in T�,θ , which provides the embedding data to construct a hyperbolic end with particles. With the result in [12, 
Lemma 3.19] (which shows that the minimal Lagrangian maps (isotopic to the identity) between hk and h′

k converge 
to the minimal Lagrangian map (isotopic to the identity) between h and h′, as (hk) converge to h and (h′

k) converge 
to h′), we have the following proposition.

Proposition 5.10. For any K ∈ (−1, 0), the map φK : T�,θ × T�,θ →HEθ is continuous.

Proof. It suffices to prove that if the sequence (hk, h′
k)k∈N converges to (h, h′) ∈ T�,θ × T�,θ , then the sequence 

(φK(hk, h′
k))k∈N converges to φK(h, h′) ∈ HEθ . Denote by mk the unique minimal Lagrangian map between (�, hk)

and (�, h′
k) isotopic to the identity and by m the unique minimal Lagrangian map between (�, h) and (�, h′) isotopic 

to the identity.
By the proof in [12, Lemma 3.19], the sequence (mk)k∈N converges to m. Let bk : T � → T � be the bundle 

morphism defined outside the singular locus which is described in Proposition 2.14 with the property m∗
k(h

′
k) =

hk(bk•, bk•). Then bk converges to a bundle morphism from T � to T �, say b.
Let Ik = (1/|K|)hk and Bk = √

1 + Kbk . Then (�, Ik, Bk)k∈N converges to (�, I, B), in the sense that Ik and Bk

converge to I = (1/|K|)h and B = √
1 + Kb, respectively. This implies that (φK(hk, h′

k))k∈N converges to φK(h, h′)
in HEθ . The lemma follows. �
5.4. The properness of the map φK

To prove this property of φK , we first give a comparison between the lengths of closed geodesics in the same 
isotopy class on the metric boundary ∂0M and on a strictly concave surface in a hyperbolic end M with particles.
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Lemma 5.11. Let M be a hyperbolic end with particles. Let S be a strictly concave surface in M . Then for any closed 
geodesic γ on ∂0M , the length of γ is smaller than the length of any closed minimizing geodesic γ ′ on S isotopic to 
γ in M .

Proof. Let r : M → ∂0M be the closest point projection of M to the metric boundary ∂0M (this is well-defined 
since ∂0M is concave). Note that if x ∈ M is a singular point, then the closet point projection is along the singular 
curve through x. Then r is 1-Lipschitz with respect to the hyperbolic metric on M and the induced metric on ∂0M . 
Therefore, the marked length spectrum of ∂0M is bounded by the marked length spectrum of S. This completes the 
proof. �

Let X be a topological space and let (xn)n∈N be a sequence of elements in X. We say that (xn)n∈N tends to infinity
if (xn)n∈N is not contained in any compact subset of X.

Now we recall a result in Teichmüller spaces of hyperbolic surfaces with cone singularities of prescribed angles 
less than π . This follows from an analysis on the parametrization of T�,θ by Fenchel–Nielsen coordinates associated 
to a fixed pants decomposition and the Collar lemma for hyperbolic cone-surfaces (see [14, Theorem 3]).

Lemma 5.12. Let (hn)n∈N be a sequence of elements in T�,θ . Then the following two statements are equivalent:

(1) (hn)n∈N tends to infinity.
(2) For any k ∈ N

+, there exists a simple closed curve γk on � and an integer N > 0 (depending on k and γk), such 
that �γk

(hN) < (1/k) �γk
(h0).

Proposition 5.13. For any K ∈ (−1, 0), the map φK : T�,θ × T�,θ →HEθ is proper.

Proof. Denote φK(hn, h′
n) = (Mn, gn) for n ∈N. We suppose that (Mn, gn)n∈N converges to a limit (M, g), and will 

prove that (hn)n∈N and (h′
n)n∈N must remain bounded.

It follows from the hypothesis that (mn)n∈N and (ln)n∈N remain bounded (see Proposition 3.11), where mn and 
ln are the induced metric and measured bending lamination on ∂0Mn for gn. After extracting a subsequence, we can 
suppose that (mn)n∈N converges to a limit m, and (ln)n∈N converges to a limit l, where m and l are the induced metric 
and measured bending lamination on ∂0M for g.

Note that the concave surface �K,n of constant curvature K in Mn has the induced metric In = (1/|K|)hn. It 
follows from Lemma 5.11 that �γ (mn) < �γ (In) = (1/

√|K|)�γ (hn) for all simple closed curves γ on �. Suppose 
that (hn)n∈N is not bounded. Combined with Lemma 5.12, this shows that, for any k > 0, there exists a simple closed 
curve γk on � and an integer N > 0 (depending on k and γk), such that �γk

(mN) < (k
√|K|)−1�γk

(h0). Applying 
Lemma 5.12 again, we find that (mn)n∈N tends to infinity, which leads to a contradiction.

We first note that there exists r > 0 such that for all x ∈ �K,n, the distance from x to ∂0Mn is at most r . Otherwise, 
there would be a sequence (xn)n∈N with xn ∈ �K,n and dgn(xn, ∂0Mn) → ∞, and this would contradict the fact that 
In, mn are converging to metrics of constant curvature, ln is converging to l, and the area of a concave surface in Mn

expands exponentially with respect to the distance r along the normal flow starting from ∂0Mn.
Let Sr,n be the set of points at distance r from ∂0Mn for gn, with the induced metric Ir,n. For all n, Sr,n is a smooth 

(outside the singular locus), strictly concave surface. Let IIIr,n be the third fundamental form of Ir,n. Notice that since 
mn → m and ln → l, IIIr,n must also converge to a limit IIIr .

We claim that the length spectrum of the third fundamental form IIIn of �K,n is smaller than the length spectrum of 
IIIr,n of Sr,n. This is equivalent to proving that the length spectrum of the induced metric on the dual surface �d

K,n in 
Md

n , the GHM de Sitter spacetime with particles dual to Mn as seen in Section 4, is smaller than the length spectrum 
of the induced metric on the surface Sd

r,n dual to Sr,n. To prove this dual statement, note that the definition of the 
duality shows that Sd

r,n is the set of points at distance r from the initial singularity (∂0Mn)
d of Md

n . As a consequence, 
the open segments of length r orthogonal to Sd

r,n in the past foliate the past of Sd
r,n, and the de Sitter metric on the past 

of Sd
r,n can be written as

−dt2 + I d
t,n, t ∈ (0, r) ,
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where I d
t,n is the induced metric on Sd

t,n and therefore isometric to IIIt,n.
Since the Sd

t,n are future-convex, I d
t,n is increasing in t , and therefore I d

t,n ≤ I d
r,n for all t ≤ r . It follows that the 

induced metric on the surface �d
K,n can be written as

I d
n = −dt2 + I d

t,n ≤ I d
t,n ≤ I d

r,n ,

where we are using the identification between �d
K,n, Sd

t,n and Sd
r,n through the normal flow of the (Sd

t,n)t∈(0,r). Here t
is the function defined on �d

K,n as the distance to the initial singularity of Md
n .

We have now established that the length spectrum of IIIn is smaller than that of IIIr,n, and so uniformly bounded. 
This shows that, after extracting a subsequence, (IIIn)n∈N converges to a limit. Recall that in Lemma 5.1 we showed 
that h′

n = |K∗|IIIn, where K∗ = K/(1 + K). Therefore, (h′
n)n∈N also converges to a limit. �

Proof of Proposition 5.3. By Proposition 3.11, HEθ is homeomorphic to T ∗T�,θ . Therefore T�,θ × T�,θ and HEθ

are both simply connected. Note that T�,θ ×T�,θ and HEθ have the same dimension and have no boundary. Combined 
with Proposition 5.9, Proposition 5.10, and Proposition 5.13, it follows that φK is a homeomorphism. �
5.5. The convergence of K-surfaces

Fix a hyperbolic end M with particles. By Proposition 5.3, M contains a locally concave surface SK of constant 
curvature K for all K ∈ (−1, 0) (since φK is surjective). Furthermore, the constant curvature K-surface in M is 
unique (since φk is injective) and distinct constant curvature K-surfaces are disjoint from each other (this follows 
from Proposition 5.8).

To show that M admits a foliation by locally concave constant curvature surfaces, it suffices to prove that the union 
of constant curvature K-surfaces SK over all K ∈ (−1, 0) is exactly M . In particular, we show that the sequence 
(SKn)n∈N of constant curvature Kn-surfaces in M converges to SK in the C2-topology (outside the singular locus) if 
Kn → K ∈ (−1, 0).

Note that the singularities on a constant curvature surface in M behave like “umbilical” points and the cone angles 
are less than π , the theorem given by F. Labourie [22, Theorem D] (which describes a degenerating phenomenon of a 
sequence of isometric embedding of a surface with the determinants of second fundamental form bounded below by 
ε > 0 in a Riemannian 3-manifold with sectional curvature less than K0 for a real number K0) can be generalized to 
the following case of hyperbolic ends with cone singularities.

Theorem 5.14. Let M be a hyperbolic end with particles and let Sn be a sequence of surfaces in M with the determi-
nants of second fundamental forms bounded below by ε > 0, with the induced metric gn. Let fn be an embedding of 
the prescribed surface � into M with the image fn(�) = Sn. Assume that f ∗

n (gn) converges to a Riemannian metric 
g∞ in the C2-topology, and fn converges to an embedding f∞ : � → M in the C0-topology but not in the C3-topology 
(outside the singular locus), then there exists a complete geodesic γ of (�, g∞) such that f∞|γ is an isometry from γ
into a geodesic of M .

Lemma 5.15. Let M be a hyperbolic manifold with particles which has a concave metric boundary. Assume that M̄
contains a complete geodesic γ which stays in a bounded distance from ∂0M , then γ lies on the metric boundary ∂0M .

Proof. Consider a function u : γ → R≥0 defined by

u(x) = sinhd(x, ∂0M).

Denote by g the metric on M̄ . It is known that u satisfies the equality Hess(u) ≥ ug in the distributional sense (see 
e.g. [26, Lemma A.12]), since ∂0M is concave and the map exp : N∂0M → M is a homeomorphism (see Lemma 2.6). 
Assume that γ is a geodesic parameterized by arclength, then (u ◦ γ )′′ ≥ u ◦ γ . Note that γ stays at bounded distance 
from ∂0M . Applying the maximum principle, we obtain that u ◦ γ = 0 for all t ∈R. Therefore, the complete geodesic 
γ lies on the metric boundary ∂0M . �
Lemma 5.16. Let (M, g) be a hyperbolic end with particles. Let (SKn)n∈N be a sequence of locally concave surfaces 
in M of constant curvature Kn ∈ (−1, 0). Then the following statements hold.
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(1) If Kn → K ∈ [−1, 0) with Kn �= K for any n ∈ N, then the sequence (SKn)n∈N converges to SK in the compact-
open topology (or C0-topology). Moreover, if K ∈ (−1, 0), then the sequence (SKn)n∈N converges to SK in the 
C2-topology (outside the singular locus).

(2) If Kn → 0, then the (least) distance from the surface SKn to the metric boundary ∂0M tends to infinity as n → ∞.

Proof. Proof of Statement (1): Denote by � the ∂∞M-directed normal flow, given by the exponential map exp :
N∂0M → M (see the map exp in Lemma 2.6). By the Gauss–Bonnet formula for surfaces with cone singularities (see 
e.g. [33, Proposition 1]), the area of SKn is equal to (2π/Kn) χ(�, θ), where

χ(�, θ) = χ(�) +
n0∑
i=1

(θi/2π − 1) < 0.

Therefore, Area(SKn) → (2π/K) χ(�, θ) = Area(SK) as n → ∞, where K ∈ [−1, 0).
We claim that SKn converges to SK in the compact-open topology as n → ∞. Indeed, we first fix an embedding 

map f∞ : � → M such that f∞(�) = SK . Then let fn : � → M be the embedding map compatible with the flow 
�, that is, the map fn ◦ f −1∞ : SK → SKn coincides with the homeomorphism from SK to SKn induced by the flow 
� for all n ∈ N. Suppose that there exists a compact subset U ⊂ �, such that the sequence (fn(U))n∈N does not 
converge to f∞(U) in M . Then there exists a neighborhood V of f∞(U) in M such that we can find a subsequence 
(fnk

)k∈N with fnk
(U) disjoint from V for all k ∈N. By Proposition 5.8, there exists an integer N > 0, such that fn(U)

is disjoint from V for n ≥ N , and SKn is disjoint from SK for all Kn �= K . Combined with the construction of fn, 
the distance from f∞(U) ⊂ SK to fn(U) ⊂ SKn along the flow � is bigger than a positive number r0 for all n ≥ N . 
Note that the induced metric by M is strictly increasing along the normal flow �. This implies that the sequence 
(|Area(SK) − Area(SKn)|)n∈N+ does not converge to zero, which leads to a contradiction.

Now we show that (SKn)n∈N converges to SK in the C2-topology outside the singular locus for all K ∈ (−1, 0). 
Denote by gn the induced metric on SKn for all n ∈ N. Note that SKn is orthogonal to the singular lines lk (which 
are homeomorphic to {pk} × R) and the angle of the singularity on SKn at the intersection with lk is θk ∈ (0, π) for 
k = 1, ..., n0. Therefore, the metrics gn can be written as follows:

gn = (1/|Kn|)ĝn,

where ĝn ∈Mθ−1 for all n ∈N
+.

For convenience, we assume that SK0 = ∂0M , that is, K0 = −1. By Lemma 5.11, for any simple closed curve γ on 
�, we have

�fn(γ )(gn) ≥ �f0(γ )(g0),

for all n ∈ N. Note that Kn converges to K ∈ (−1, 0). Without loss of generality, we assume that Kn increasingly 
converges to K . Then

�fn(γ )(ĝn) = �fn(γ )(|Kn|gn) = √|Kn|�fn(γ )(gn) ≥ √|K| �f0(γ )(g0) = √
K/K0 �f0(γ )(ĝ0),

for all n ∈N. Here K/K0 < 1.
Denote by f ∗

n (ĝn) the pull-back metric on � of ĝn under fn and still denote by f ∗
n (ĝn) its isotopy class in T�,θ for 

all n ∈N. For any simple closed curve γ on �, we get

�γ (f ∗
n (ĝn)) ≥ √

K/K0 �γ (f0
∗(ĝ0)).

By Lemma 5.12, the set {f ∗
n (ĝn) : n ∈ N} is compact in T�,θ . Therefore, up to extracting a subsequence, 

(f ∗
n (ĝn))n∈N converges in T�,θ . Note that (fn)n∈N is compatible with the flow �. (f ∗

n (ĝn))n∈N converges to f ∗∞(ĝK)

in the C2-topology (outside the singular locus), where ĝK = |K| gK and gK is the induced metric on SK in M . In 
particular, f ∗

n (gn) converges to g∞ = f ∗∞(gK) in the C2-topology (outside the singular locus). Note that � is compact 
and by the above result we have fn converges to f∞ in the C0-topology.

We claim that fn converges to f∞ in the C3-topology. Otherwise, it follows from Theorem 5.14 that there exists 
a complete geodesic γ of (�, g∞) such that f∞|γ is an isometry from γ into a geodesic of (M, g). Note that the 
geodesic f∞(γ ) lies on SK and thus stays in a bounded distance from ∂0M . Combined with Lemma 5.15, f∞(γ ) is 
contained in ∂0M which is disjoint from SK . This leads to a contradiction. Therefore, Statement (1) follows.
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Proof of Statement (2): We first fix the surface SK1 and denote S = SK1 . Consider a map ψt : S → M defined by 
ψt(x) = expx(t · nx), where nx is the ∂∞M-directed unit normal vector at x of S in M . For any T > 0, we denote 
ST = ψT (S) and denote by λT , μT the principal curvatures of ST . By Lemma 5.5, the principal curvatures of ST are

λT (ψT (x)) = λ(x) + tanh(T )

1 + λ(x) tanh(T )
, μT (ψT (x)) = μ(x) + tanh(T )

1 + μ(x) tanh(T )
,

where λ(x) and μ(x) are the principal curvatures of S at x.
Let CT = supy∈ST λT (y)μT (y). Since λt (ψt (x))μt (ψt (x)) increasingly tends to 1 as t → +∞ for all x ∈ S, and 

ST is also locally concave and compact, so CT ∈ (0, 1).
By assumption, Kn → 0 (without lost of generality, we assume that Kn increasingly converges to 0). Therefore 

there exists NT > 0 (depending only on T ) such that for all n ≥ NT , we have

−1 + CT < Kn < 0. (10)

Note that ST and SKn are strictly concave surfaces and behave “umbilically” at singular points. It follows from 
the inequality (10) and Lemma 5.7 that SKn is on the concave side of ST for all n ≥ NT . Observe that CT → 1 as 
T → +∞, and the distance from ST to ∂0M tends to infinity as T → +∞. Combined with the result above, the 
distance from SKn to ∂0M tends to infinity as n → ∞. �

The following corollary is a direct consequence of Proposition 5.8 and Lemma 5.16.

Corollary 5.17. Let M be a hyperbolic end with particles. Then the union of the constant curvature K-surfaces SK

in M over all K ∈ (−1, 0) provides a C2-foliation of the regular part of M .

Proof of Theorem 1.3. As discussed in the beginning of Section 5.5, it follows directly from Proposition 5.3 and 
Corollary 5.17. �
5.6. Applications to smooth grafting

In the non-singular case, the landslide flow is defined in [8,9] as a map L : S1 × T × T → T × T , sending 
(eiα, h, h∗) to the pair (h1, h2), where h1 is the left metric of the unique GHM AdS spacetime containing a future-
convex spacelike surface with induced metric cos2(α/2)h and third fundamental form sin2(α/2)h∗ and h2 is the 
left metric of the unique GHM AdS spacetime containing a future-convex spacelike surface with induced metric 
cos2(α/2)h∗ and third fundamental form sin2(α/2)h.

It is also proved there that the landslide map, composed with the canonical projection on the first factor, has a 
complex extension as the “smooth grafting” map sgr : (0, 1) × T × T → T , sending (r, h, h∗) to the conformal 

metric at infinity of the unique hyperbolic end containing a constant curvature surface with induced metric (1+r)2

4r
h

and third fundamental form (1−r)2

4r
h∗. This surface has constant curvature −4r/(1 + r)2. The map sgr is obtained 

from another grafting map SGr : (0, 1) × T × T → CP by composition on the left with the forgetful map from CP
to T .

The landslide map limits in a precise sense to the earthquake map T ×ML → T , while the smooth grafting map 
limits in a precise sense to the grafting map T ×ML → T .

The results of [12] on constant Gauss curvature foliations in convex GHM AdS spacetimes with particles lead to 
an extension of the landslide flow to hyperbolic surfaces with cone singularities of angles less than π . In the same 
manner, the results presented here on constant curvature foliations of hyperbolic ends with particles lead directly, 
by extending the arguments of [8] without any serious change, to the definition of the smooth grafting maps sgrθ :
(0, 1) × T�,θ × T�,θ → T�,θ and SGrθ : (0, 1) × T�,θ × T�,θ → CPθ .

It can be proved, using the same arguments as in [8], that:

(1) The smooth grafting map sgrθ provides a complex extension of the landslide map. More precisely, if L1 : S1 ×
T�,θ × T�,θ → T�,θ is the landslide map followed by projection on the first factor, then the “complex landslide” 
map:
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T�,θ × T�,θ

ψ
KdφK

HEθ
δ DSθ

Fig. 4. A diagram showing the parametrizations of HEθ and DSθ by T�,θ × T�,θ , respectively.

D × T�,θ × T�,θ → T�,θ

(reiα, h,h∗) �→ sgr(r,Leiα (h,h∗))
defines a holomorphic map from the unit disk D to T�,θ extending L1 to the unit disk, for any fixed h and h∗.

(2) The smooth grafting maps sgrθ and SGrθ limit, in the same suitable sense as in [8], to the grafting maps grθ :
T�,θ ×MLp → T�,θ and Grθ : T�,θ ×MLp → CPθ .

6. Foliations of de Sitter spacetimes with particles by constant curvature surfaces

In this last section, we prove that convex GHM de Sitter spacetimes with particles admit a unique foliation by 
constant Gauss curvature surfaces orthogonal to the particles. As a consequence, for each Kd ∈ (−∞, 0), the space of 
convex GHM de Sitter spacetimes with particles can be parameterized by the product of two copies of T�,θ in terms 
of constant curvature Kd -surface.

6.1. Foliation of de Sitter spacetimes with particles by K-surfaces

As a consequence of Proposition 1.6, each foliation of a non-degenerate hyperbolic end with particles has a dual 
foliation of the dual future-complete convex GHM de Sitter space-time with particles.

Observe that the curvature Kd varies from −∞ to 0 in Proposition 1.6, combined with Theorem 1.3, we therefore 
obtain Corollary 1.7, which states that every future-complete convex GHM de Sitter spacetime Md with particles ad-
mits a unique foliation by surfaces of constant curvature Kd , with Kd varying from −∞ near the initial singularity to 
0 near the boundary at infinity. In particular, for each Kd ∈ (−∞, 0), Md contains a unique closed surface of constant 
curvature Kd . Combined with Theorem 1.5 and Corollary 5.17, the union of the constant curvature Kd -surfaces in 
Md over all Kd ∈ (−∞, 0) provides a C2-foliation of the regular part of Md .

6.2. A parametrization of DSθ by T�,θ × T�,θ

We can also give a parametrization of DSθ in terms of constant curvature surfaces.
Let Kd ∈ (−∞, 0) and let (h, h′) ∈ Mθ−1 × Mθ−1 be a pair of normalized metrics. Using a similar argument as 

in Lemma 5.1, there exists a unique convex GHM de Sitter spacetime Md with particles which contains a surface of 
constant curvature Kd , with the induced metric Id = (1/|Kd |)h′ and the third fundamental form IIId = (1/|Kd∗|)h, 
where Kd∗ = Kd/(1 − Kd).

For any Kd ∈ (−∞, 0), define the map ψKd : T�,θ ×T�,θ →DSθ by assigning to an element (τ, τ ′) ∈ T�,θ ×T�,θ

the isotopy class of the de Sitter spacetime with particles satisfying the above property. Combining Proposition 5.3 and 
the duality between strictly concave surfaces in a hyperbolic end M with particles and strictly future-convex spacelike 
surfaces in the dual de Sitter spacetimes Md with particles (see Theorem 1.5), it follows that the parametrization ψKd

is equal to the composition map δ ◦ φK , and therefore a homeomorphism (as shown in Fig. 4).
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