We study the initial-boundary value problem for the derivative nonlinear Schrödinger (DNLS) equation. More precisely we study the wellposedness theory and the regularity properties of the DNLS equation on the half line. We prove almost sharp local wellposedness, nonlinear smoothing, and small data global wellposedness in the energy space. One of the obstructions is that the crucial gauge transformation we use replaces the boundary condition with a nonlocal one. We resolve this issue by running an additional fixed point argument. Our method also implies almost sharp local and small energy global wellposedness, and an improved smoothing estimate for the quintic Schrödinger equation on the half line. In the last part of the paper we consider the DNLS equation on and prove smoothing estimates by combining the restricted norm method with a normal form transformation.
@article{AIHPC_2018__35_7_1947_0, author = {Erdo\u{g}an, M.B. and G\"urel, T.B. and Tzirakis, N.}, title = {The derivative nonlinear {Schr\"odinger} equation on the half line}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1947--1973}, publisher = {Elsevier}, volume = {35}, number = {7}, year = {2018}, doi = {10.1016/j.anihpc.2018.03.006}, mrnumber = {3906860}, zbl = {1405.35194}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.006/} }
TY - JOUR AU - Erdoğan, M.B. AU - Gürel, T.B. AU - Tzirakis, N. TI - The derivative nonlinear Schrödinger equation on the half line JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1947 EP - 1973 VL - 35 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.006/ DO - 10.1016/j.anihpc.2018.03.006 LA - en ID - AIHPC_2018__35_7_1947_0 ER -
%0 Journal Article %A Erdoğan, M.B. %A Gürel, T.B. %A Tzirakis, N. %T The derivative nonlinear Schrödinger equation on the half line %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1947-1973 %V 35 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.006/ %R 10.1016/j.anihpc.2018.03.006 %G en %F AIHPC_2018__35_7_1947_0
Erdoğan, M.B.; Gürel, T.B.; Tzirakis, N. The derivative nonlinear Schrödinger equation on the half line. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1947-1973. doi : 10.1016/j.anihpc.2018.03.006. http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.006/
[1] Nonlinear Fiber Optics, Academic Press, 2007
[2] On the regularization mechanism for the periodic Korteweg–de Vries equation, Commun. Pure Appl. Math., Volume 64 (2011) no. 5, pp. 591–648 | DOI | MR | Zbl
[3] Ill-posedness for the derivative Schrödinger and generalized Benjamin–Ono equations, Trans. Am. Math. Soc., Volume 353 (2001), pp. 3649–3659 | DOI | MR | Zbl
[4] Non-homogeneous boundary value problems for the Korteweg–de Vries and the Korteweg–de Vries–Burgers equations in a quarter plane, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008) no. 6, pp. 1145–1185 | Numdam | MR | Zbl
[5] Nonhomogeneous boundary-value problems for one-dimensional nonlinear Schrödinger equations (preprint) | arXiv
[6] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993), pp. 209–262 | DOI | Zbl
[7] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: The KdV equation, Geom. Funct. Anal., Volume 3 (1993), pp. 209–262 | MR | Zbl
[8] Global Solutions of Nonlinear Schrödinger Equations, AMS Colloquium Publications, vol. 46, 1998 | MR | Zbl
[9] N-soliton solution for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions, J. Phys. A, Math. Gen., Volume 39 (2006), pp. 3263–3274 | MR | Zbl
[10] Global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., Volume 33 (2001) no. 2, pp. 649–669 | MR | Zbl
[11] A refined global well-posedness result for Schrödinger equations with derivatives, SIAM J. Math. Anal., Volume 34 (2002), pp. 64–86 | DOI | MR | Zbl
[12] The generalized Korteweg–de Vries equation on the half line, Commun. Partial Differ. Equ., Volume 27 (2002), pp. 2187–2266 | DOI | MR | Zbl
[13] Well-posedness and nonlinear smoothing for the “good” Boussinesq equation on the half-line, J. Differ. Equ., Volume 262 (2017) no. 12, pp. 5824–5859 | DOI | MR | Zbl
[14] Smoothing for the fractional Schrödinger equation on the torus and the real line, Indiana Univ. Math. J. (2018) (in press, preprint 2017) | MR
[15] Global smoothing for the periodic KdV evolution, Int. Math. Res. Not. (2013) no. 20, pp. 4589–4614 | DOI | MR | Zbl
[16] Smoothing and global attractors for the Zakharov system on the torus, Anal. PDE, Volume 6 (2013) no. 3, pp. 723–750 | DOI | MR | Zbl
[17] Dispersive partial differential equations. Wellposedness and applications, London Mathematical Society Student Texts, vol. 86, Cambridge University Press, Cambridge, 2016 (xvi+186 pp.) | MR
[18] Regularity properties of the cubic nonlinear Schrödinger equation on the half line, J. Funct. Anal., Volume 271 (2016) no. 9, pp. 2539–2568 | DOI | MR | Zbl
[19] Regularity properties of the Zakharov system on the half-line, Commun. Partial Differ. Equ., Volume 42 (2017), pp. 1121–1149 | DOI | MR | Zbl
[20] Integrable nonlinear evolution equations on the half-line, Commun. Math. Phys., Volume 230 (2002) no. 1, pp. 1–39 | DOI | MR | Zbl
[21] On the Cauchy problem for the Zakharov system, J. Funct. Anal., Volume 151 (1997), pp. 384–436 | DOI | MR | Zbl
[22] Global well-posedness for the derivative nonlinear Schrödinger equation in , Discrete Contin. Dyn. Syst., Volume 37 (2017) no. 1, pp. 257–264 | MR
[23] The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., Volume 20 (1993), pp. 823–833 | DOI | MR | Zbl
[24] On the derivative nonlinear Schrödinger equation, Physica D, Volume 55 (1992), pp. 14–36 | DOI | MR | Zbl
[25] Finite energy solution of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., Volume 25 (1994), pp. 1488–1503 | DOI | MR | Zbl
[26] Uniform Estimates for the Zakharov System and the Initial-Boundary Value Problem for the Korteweg–de Vries and Nonlinear Schrödinger Equations, University of Chicago, 2004 (Ph.D. Thesis 210 pages) | MR
[27] The initial-boundary value problem for the 1−d nonlinear Schrödinger equation on the half-line, Differ. Integral Equ., Volume 18 (2005), pp. 647–668 | MR | Zbl
[28] An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., Volume 19 (1978), pp. 789–801 | MR | Zbl
[29] A smoothing property for the -critical NLS equations and an application to blowup theory, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 3, pp. 745–762 | DOI | Numdam | MR | Zbl
[30] Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993) no. 4, pp. 527–620 | DOI | MR | Zbl
[31] Solution and integrability of a generalized derivative nonlinear Schrödinger equation, J. Phys. Soc. Jpn., Volume 66 (1997), pp. 60–66 | DOI | MR | Zbl
[32] Global solvability of the derivative nonlinear Schrödinger equation, Trans. Am. Math. Soc., Volume 314 (1989) no. 1, pp. 107–118 | MR | Zbl
[33] The derivative nonlinear Schrödinger equation on the half-line, Physica D, Volume 237 (2008), pp. 3008–3019 | DOI | MR | Zbl
[34] The solution of the global relation for the derivative nonlinear Schrödinger equation on the half-line, Physica D, Volume 240 (2011), pp. 512–525 | DOI | MR | Zbl
[35] Global existence for the derivative nonlinear Schrödinger equation by the method of inverse scattering, Commun. Partial Differ. Equ., Volume 41 (2016) no. 11, pp. 1692–1760 | MR
[36] Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 1, pp. 217–265 | Numdam | MR
[37] Global well-posedness for Schrödinger equation with derivative in , J. Differ. Equ., Volume 251 (2011) no. 8, pp. 2164–2195 | DOI | MR | Zbl
[38] Modified nonlinear Schrödinger equation for Alfven waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Jpn., Volume 41 (1976), pp. 265–271 | MR | Zbl
[39] On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys., Volume 16 (1976), pp. 321–334 | DOI
[40] On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J., Volume 45 (1996), pp. 137–163 | DOI | MR | Zbl
[41] The Nonlinear Schrödinger Equation, Applied Math. Sciences, vol. 139, Springer-Verlag, 1999 | MR | Zbl
[42] Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Differ. Equ., Volume 4 (1999), pp. 561–680 | MR | Zbl
[43] Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces, Electron. J. Differ. Equ., Volume 42 (2001), pp. 1–23 | MR | Zbl
[44] Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conference Series in Mathematics, vol. 106, AMS, Providence, RI, 2006 | DOI | MR | Zbl
[45] On solutions of the derivative nonlinear Schrödinger equation: existence and uniqueness theorem, Funkc. Ekvacioj, Volume 23 (1980), pp. 259–277 | MR | Zbl
[46] On solutions of the derivative nonlinear Schrödinger equation II, Funkc. Ekvacioj, Volume 234 (1981), pp. 85–94 | MR | Zbl
[47] Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space, Anal. PDE, Volume 6 (2013) no. 8, pp. 1989–2002 | MR | Zbl
[48] Global well-posedness on the derivative nonlinear Schrödinger equation, Anal. PDE, Volume 8 (2015) no. 5, pp. 1101–1112 | MR | Zbl
Cité par Sources :