For arbitrarily large initial data in an open set defined by an approximate Majorana condition, global existence and scattering results for solutions to the Dirac equation with Soler-type nonlinearity and the Dirac–Klein–Gordon system in critical spaces in spatial dimension three are established.
Mots clés : Cubic Dirac equation, Dirac–Klein–Gordon system, Global existence, Scattering, Majorana condition
@article{AIHPC_2018__35_6_1707_0, author = {Candy, Timothy and Herr, Sebastian}, title = {On the {Majorana} condition for nonlinear {Dirac} systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1707--1717}, publisher = {Elsevier}, volume = {35}, number = {6}, year = {2018}, doi = {10.1016/j.anihpc.2018.02.001}, mrnumber = {3846242}, zbl = {1403.35254}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.02.001/} }
TY - JOUR AU - Candy, Timothy AU - Herr, Sebastian TI - On the Majorana condition for nonlinear Dirac systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1707 EP - 1717 VL - 35 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.02.001/ DO - 10.1016/j.anihpc.2018.02.001 LA - en ID - AIHPC_2018__35_6_1707_0 ER -
%0 Journal Article %A Candy, Timothy %A Herr, Sebastian %T On the Majorana condition for nonlinear Dirac systems %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1707-1717 %V 35 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.02.001/ %R 10.1016/j.anihpc.2018.02.001 %G en %F AIHPC_2018__35_6_1707_0
Candy, Timothy; Herr, Sebastian. On the Majorana condition for nonlinear Dirac systems. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1707-1717. doi : 10.1016/j.anihpc.2018.02.001. http://www.numdam.org/articles/10.1016/j.anihpc.2018.02.001/
[1] Nonlinear Hyperbolic Problems, Lecture Notes in Math., Volume vol. 1402, Springer, Berlin (1989), pp. 99–113 (Bordeaux, 1988 MR 1033278) | DOI | MR | Zbl
[2] Workshop on Hyperbolic Systems and Mathematical Physics, Port. Math., Volume 46 (1989) no. suppl., pp. 455–473 (Lisbon, 1988 MR 1080766) | MR | Zbl
[3] The cubic Dirac equation: small initial data in , Commun. Math. Phys., Volume 335 (2015) no. 1, pp. 43–82 (MR 3314499) | MR | Zbl
[4] The cubic Dirac equation: small initial data in , Commun. Math. Phys., Volume 343 (2016) no. 2, pp. 515–562 (MR 3477346) | MR | Zbl
[5] On global well-posedness and scattering for the massive Dirac–Klein–Gordon system, J. Eur. Math. Soc., Volume 19 (2017) no. 8, pp. 2445–2467 (MR 3668064) | MR | Zbl
[6] Relativistic Quantum Mechanics, McGraw-Hill Book Co., New York, Toronto, London, 1964 (MR 0187641) | MR
[7] Global well-posedness for the massless cubic Dirac equation, Int. Math. Res. Not., Volume 2016 (2016) no. 22, pp. 6735–6828 (MR 3632067) | MR | Zbl
[8] Conditional large data scattering results for the Dirac–Klein–Gordon system | arXiv | Zbl
[9] Transference of bilinear restriction estimates to quadratic variation norms and the Dirac–Klein–Gordon system, Anal. PDE (2018) (in press) | arXiv | MR | Zbl
[10] On certain global solutions of the Cauchy problem for the (classical) coupled Klein–Gordon–Dirac equations in one and three space dimensions, Arch. Ration. Mech. Anal., Volume 54 (1974), pp. 223–237 MR 0369952 (51 #6181) | MR | Zbl
[11] On the cubic Dirac equation with potential and the Lochak–Majorana condition, J. Math. Anal. Appl., Volume 456 (2017), pp. 1203–1237 | MR | Zbl
[12] Colloquium: Majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys., Volume 87 (2015), pp. 137–163 | MR
[13] Wave equation for a magnetic monopole, Int. J. Theor. Phys., Volume 24 (1985) no. 10, pp. 1019–1050 | MR
[14] Teoria simmetrica dell'elettrone e del positrone, Nuovo Cimento, Volume 14 (1937) no. 4, pp. 171–184 | Zbl
[15] Structure of Dirac matrices and invariants for nonlinear Dirac equations, Differ. Integral Equ., Volume 17 (2004) no. 9–10, pp. 971–982 (MR 2082456) | MR | Zbl
[16] The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992 (MR 1219537) | MR | Zbl
Cité par Sources :