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Abstract

For arbitrarily large initial data in an open set defined by an approximate Majorana condition, global existence and scattering 
results for solutions to the Dirac equation with Soler-type nonlinearity and the Dirac–Klein–Gordon system in critical spaces in 
spatial dimension three are established.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let m, M ≥ 0. Using the summation convention with respect to μ = 0, . . . , 3, the cubic Dirac equation (Soler 
model) for a spinor ψ : R1+3 → C

4 is given by

−iγ μ∂μψ + Mψ = (ψψ)ψ. (1.1)

Here, x0 = t , ∂0 = ∂t , and ψ = ψ†γ 0 is the Dirac adjoint, where ψ† denotes the complex conjugate transpose of the 
spinor ψ , and the matrices γ μ ∈C

4×4 are the standard Dirac matrices, see [9]. Writing � = ∂2
t −�, the Dirac–Klein–

Gordon system is

−iγ μ∂μψ + Mψ = φψ,

�φ + m2φ = ψψ,
(1.2)

where φ :R1+3 →R is a scalar field. These equations (1.1) and (1.2) arise as in relativistic quantum mechanics as toy 
models for interactions of elementary particles, see e.g. [6,16].
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In previous work, we have addressed the initial value problems for the above equations for small initial data of low 
regularity. Concerning the cubic Dirac equation, we have obtained small data global well-posedness and scattering in 
the massive case M > 0 [3,4] as well as the massless case M = 0 [7]. For the massive Dirac–Klein–Gordon system, 
we have obtained small data global well-posedness in the non-resonant regime for initial data of subcritical regularity 
[5] and both in the resonant and the non-resonant regime in the critical space with additional angular regularity [9]. 
Concerning a more complete account on earlier work on the low regularity well-posedness problem, we refer to the 
references therein. The purpose of the current article to gain insight into the asymptotic behaviour of an open set of 
large data solutions to (1.1) and (1.2).

In [10] Chadam and Glassey considered the equations (1.1) and (1.2) under the assumption that the initial data was 
of the form

ψ(0) = (f, g,−g∗, f ∗)t (1.3)

where, given a complex scalar (or vector) z ∈ Cn, we let z∗ denote the complex conjugate, and f, g : R3 → C. This 
condition (1.3) is equivalent to

ψ(0) + zγ 2ψ∗(0) = 0 (1.4)

with z = −i, see [15]. A computation shows that the condition (1.3) is conserved under the evolution of (1.1) and (1.2), 
and moreover, that if ψ is of the form (1.3) then ψψ = 0. Consequently, under the assumption (1.3), the cubic Dirac 
equation (1.1) and the Dirac–Klein–Gordon system (1.3) reduce to equations which are linear in ψ . In particular, the 
argument of Chadam–Glassey gives scattering and global well-posedness for (1.1) and (1.2) for a class of large data 
[10]. The structural condition (1.3) considered by Chadam and Glassey was introduced in the physics literature long 
before by Majorana [14] to describe fermions which are their own anti-particles, see [12] for an overview.

Our main Theorems 1.1 and 1.2 below pertain to solutions emanating from initial data which approximately satisfy 
the algebraic condition (1.4) with |z| = 1. For the results concerning the cubic Dirac equation (1.1), we rely on the 
estimates obtain in [3,4,7]. On the other hand, in the case of the Dirac–Klein–Gordon system (1.2), we require more 
refined estimates than those used in [9] to obtain the current sharpest small data global theory. The reason is that we 
have to deal with a large potential in the Dirac equation, which essentially is a free Klein–Gordon wave. Instead, we 
use refined estimates obtained in [8] which give a small power of a space–time L4

t,x norm on the right-hand side.
The main result regarding the cubic Dirac equation is the following.

Theorem 1.1. Let z ∈ C, |z| = 1, and M � 0. For any A � 1 there exists ε = ε(A) > 0 such that for all initial data 
satisfying

‖ψ(0)‖H 1(R3) � A and ‖ψ(0) + zγ 2ψ∗(0)‖H 1(R3) � ε,

the cubic Dirac equation (1.1) is globally well-posed and solutions scatter to free solutions as t → ±∞.

To be more precise, we prove Theorem 3.1 on a reduced system instead, which is equivalent for smooth solutions. 
In Theorem 1.1 we are forced to take ε much smaller than A−1. The regularity assumption in Theorem 1.1 is sharp, in 
the sense that Ḣ 1(R3) is the scale invariant space. In particular, the regularity assumptions match the optimal results 
known in the small data case [3,7]. The importance of Theorem 1.1 is that we can take A to be large, in particular, 
we obtain scattering for an open set of large data with essentially sharp regularity assumptions. Under stronger decay 
and regularity conditions, such results have been proven by Bachelot in [2]. Very recently, a similar result has been 
derived in [11] in the presence of a time independent potential and for initial data in H 1(R3) with additional angular 
regularity.

We also have the corresponding version for the Dirac–Klein–Gordon system. Let Hs
σ(R3) = (1 − �S2)−

σ
2 Hs(R3)

be the subspace of the standard Sobolev space Hs(R3) containing functions with σ angular derivatives in Hs(R3), 
equipped with the norm

‖f ‖Hs
σ

= ‖(1 − �S2)
σ
2 f ‖Hs

see [9,8] for details. Note that Hs(R3) = Hs(R3).
0
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Theorem 1.2. Let z ∈ C, |z| = 1. Suppose that either s > 0 = σ and 2M > m > 0, or σ > 0 = s and M, m > 0. For 
any A � 1, there exists ε = ε(A) > 0, such that if

‖ψ(0)‖Hs
σ (R3) � A, ‖φ(0)‖

H
1
2 +s

σ (R3)

�A, ‖∂tφ(0)‖
H

− 1
2 +s

σ (R3)

�A,

and
∥∥ψ(0) + zγ 2ψ∗(0)

∥∥
Hs

σ (R3)
� ε,

then the system (1.2) is globally well-posed and solutions scatter to free solutions as t → ±∞.

As for the cubic Dirac equation, we prove Theorem 4.1 on a reduced system instead, which is equivalent for smooth 
solutions.

We obtain an upper bound for ε which is the inverse exponential of a power of A, see Theorem 4.1 for more details. 
The Chadam–Glassey result in [10] corresponds to the case z = i and ε = 0 (with additional smoothness assumptions 
on the data). A result similar to Theorem 1.2 under strong decay and regularity conditions has been established in [1]. 
Notice that the small data results in [3,7,9] correspond to Theorems 1.1 and 1.2, respectively, in the case where A is 
very small, since it clearly implies the condition on ψ(0) + zγ 2ψ∗(0). Notice that s = 0 is the critical regularity for 
(1.2).

Organisation of the paper. In Section 2 we perform an initial reduction which decouples the small and the large parts 
of the spinors. In Section 3 we reformulate and prove the main results concerning the Soler model. In Section 4 we 
reformulate and prove the main results on the Dirac–Klein–Gordon system.

2. Initial reductions

Suppose we have data ψ(0) satisfying the assumptions of Theorem 1.1. One way to proceed would be to linearise 
around the Chadam–Glassey type solutions. Thus decomposing

ψ(0) = ψN(0) + ψL(0)

where ‖ψN(0)‖H 1 � ε and ψL(0) + zγ 2ψ∗
L(0) = 0. Let ψL denote the solution to the linear Dirac equation with 

data ψL(0). As mentioned in the introduction, for all times we have ψLψL = 0. Consequently, the remaining term 
ψN = ψ − ψL satisfies the equation

−iγ μ∂μψN + MψN = (
ψLψN + ψNψL

)
ψ + ψNψNψ.

The last term is small since ψN(0) is small. On the other hand, it is not at all clear that the first term 
(
ψLψN +

ψNψL

)
ψ should be small, since it contains terms of the schematic form ψ2

LψN , and ψL can be large. In particular, 
if we wanted to use the linearised equation to prove Theorem 1.1, we would be forced to absorb these terms into 
the left-hand side, which would significantly complicate the required multilinear estimates. It turns out that there 
is a better way to decompose ψ , which avoids this problem. In particular, we can exploit the multilinear estimates 
already contained in [3,7]. A similar comment applies to the proof for the Dirac–Klein–Gordon system, Theorem 1.2. 
However, a significant additional difficulty arises in the case where the data for φ is large.

We start with the following observation, see [14,13,10], we follow [15].

Lemma 2.1. Assume that ψ is a classical solution of

−iγ μ∂μψ + Mψ = V ψ

for some real-valued, scalar, and locally integrable function V :R1+3 →R. Then for any z ∈C we have

‖ψ(t) + zγ 2ψ∗(t)‖L2
x
= ‖ψ(0) + zγ 2ψ∗(0)‖L2

x
.
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Proof. A computation shows that γ μγ 2 = −γ 2(γ μ)∗ which implies that

−iγ μ∂μ

(
ψ + zγ 2ψ∗) = −iγ μ∂μψ + zγ 2( − iγ μ∂μψ)∗ = −M(ψ + zγ 2ψ∗) + V (ψ + zγ 2ψ∗).

Result now follows by multiplying by i(ψ + zγ 2ψ∗)†γ 0, taking the real part, and then integrating over R3. �
We can now rewrite the cubic Dirac equation (1.1). Let ϕ, χ : R1+3 → C4 be smooth enough and solve

−iγ μ∂μϕ + Mϕ = (
ϕχ + χϕ

)
ϕ

−iγ μ∂μχ + Mχ = (
ϕχ + χϕ

)
χ

(2.1)

with data

ϕ(0) = 1

2

(
ψ(0) + zγ 2ψ∗(0)

)
, χ(0) = 1

2

(
ψ(0) − zγ 2ψ∗(0)

)
.

Then a computation using Lemma 2.1 implies that for all t ∈ R and |z| = 1 we have

ϕ(t) + zγ 2ϕ∗(t) = 0, χ(t) − zγ 2χ∗(t) = 0

and moreover that ϕϕ = χχ = 0. Consequently, if we let ψ = ϕ + χ , we obtain a solution to the cubic Dirac equation 
(1.1). Similarly, in the case of the Dirac–Klein–Gordon system (1.2), let ϕ, χ : R1+3 → C

4 and φ : R1+3 → R be 
smooth enough and solve

−iγ μ∂μϕ + Mϕ = φϕ

−iγ μ∂μχ + Mχ = φχ

�φ + m2φ = ϕχ + χϕ

(2.2)

with data

ϕ(0) = 1

2

(
ψ(0) + zγ 2ψ∗(0)

)
, χ(0) = 1

2

(
ψ(0) − zγ 2ψ∗(0)

)
.

As in the case of the cubic Dirac equation, an application of Lemma 2.1 implies that

ϕ(t) + zγ 2ϕ∗(t) = 0, χ(t) − zγ 2χ∗(t) = 0

and hence provided |z| = 1 we have ϕϕ = χχ = 0. Consequently, letting ψ = ϕ + χ we get a solution to (1.2). For 
technical reasons, we prefer to work with a first order system. Defining φ+ = φ + i〈∇〉−1∂tφ, as φ is real-valued, we 
obtain

−iγ μ∂μϕ + Mϕ = Re(φ+)ϕ

−iγ μ∂μχ + Mχ = Re(φ+)χ

−i∂tφ+ + 〈∇〉mφ+ = 〈∇〉−1
m

(
ϕχ + χϕ

) (2.3)

with data

ϕ(0) = 1

2

(
ψ(0) + zγ 2ψ∗(0)

)
, χ(0) = 1

2

(
ψ(0) − zγ 2ψ∗(0)

)
,

and φ+(0) = φ(0) + i〈∇〉−1∂tφ(0).

Conversely, from φ+ we can recover φ by taking the real part of φ+.

3. Cubic Dirac equation

We begin by introducing some notation. Let �± be the projection

�± = 1
2

(
I ± 〈∇〉−1

M (−iγ 0γ j ∂j + Mγ 0)
)
,

let U±
m (t) = e∓it〈∇〉m be the propagator for the homogeneous half-wave equation, let

UM(t) = U+(t)�+ + U−(t)�−
M M
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be the propagator for the homogeneous Dirac equation, and let

I±,m
t0

(F )(t) = i

t∫
t0

U±
m (t − t0 − t ′)F (t ′)dt ′,

IM
t0

(G)(t) = i

t∫
t0

UM(t − t0 − t ′)γ 0G(t ′)dt ′

be the corresponding Duhamel integrals.
The previous section implies that for smooth solutions (1.1) and (2.1) are equivalent, so that we focus on proving 

the following.

Theorem 3.1. Let z ∈ C, |z| = 1, and M � 0. There exists c ∈ (0, 1), such that for any A > 0 and ε � cA−1, if the 
initial data satisfy

‖ϕ(0)‖H 1 � ε, ‖χ(0)‖H 1 � A,

then (2.1) is globally well-posed and the solutions scatter in H 1(R3) to free solutions as t → ±∞, i.e. there exist 
ϕ±∞ ∈ H 1(R3) and χ±∞ ∈ H 1(R3), such that

lim
t→±∞‖ϕ(t) − UM(t)ϕ±∞‖H 1 = 0 and lim

t→±∞‖χ(t) − UM(t)χ±∞‖H 1 = 0.

Proof. Let X ⊂ C(R, H 1(R3)) be the Banach space constructed in [3] in the massive case (M > 0) and in [7] in the 
massless case (M = 0). Further, let ‖ · ‖X denote the norm obtained by multiplying by the norms from [3,7] by a small 
enough constant, such that for all solutions ϕ ∈ X to the inhomogeneous Dirac equation

−iγ μ∂μϕ + Mϕ = (
ϕ(1)ϕ(2)

)
ϕ(3)

the bound

‖ϕ‖X � ‖ϕ(0)‖H 1(R3) + C‖ϕ(1)‖X‖ϕ(2)‖X‖ϕ(3)‖X (3.1)

holds. Consider the set

X = {
(ϕ,χ) ∈ X × X

∣∣‖ϕ‖X � 2‖ϕ(0)‖H 1,‖χ‖X � 2‖χ(0)‖H 1

}
and, for A, ε > 0, the norm

‖(ϕ,χ)‖X = ε−1‖ϕ‖X + A−1‖χ‖X.

X is a complete metric space. Let T = (T1, T2) denote the standard (inhomogeneous) solution map for (2.1) con-
structed from the Duhamel formula. The bound (3.1) together with the assumption on the initial data shows that if 
(ϕ, χ) ∈ X then

‖T1(ϕ,χ)‖X � ‖ϕ(0)‖H 1 + 2C‖ϕ‖2
X‖χ‖X � ‖ϕ(0)‖H 1 + 24C‖ϕ(0)‖2

H 1‖χ(0)‖H 1

� (1 + 24CAε)‖ϕ(0)‖H 1,

and similarly

‖T2(ϕ,χ)‖X � ‖χ(0)‖H 1 + 2C‖χ‖2
X‖ϕ‖X � (1 + 24CAε)‖χ(0)‖H 1 .

Consequently, provided that ε ≤ (24CA)−1, we see that T : X → X . Next, we verify that T is a contraction. For 
(ϕ1, χ1), (ϕ2, χ2) ∈ X another application of (3.1) gives

‖T1(ϕ1, χ1) − T1(ϕ2, χ2)‖X � 24CAε‖ϕ1 − ϕ2‖X + 23Cε2‖χ1 − χ2‖X,

and similarly
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‖T2(ϕ1, χ1) − T2(ϕ2, χ2)‖X � 24CAε‖χ1 − χ2‖X + 23CA2‖ϕ1 − ϕ2‖X.

This implies

‖T (ϕ1, χ1) − T (ϕ2, χ2)‖X � 26CAε‖(ϕ1, χ1) − (ϕ2, χ2)‖X .

Therefore, choosing ε ≤ (27CA)−1, the map T :X →X is a contraction with respect to ‖ · ‖X , hence it has a unique 
fixed point in X , and standard arguments show the continuity of the flow map. The scattering claim follows from the 
finiteness of both ‖ϕ‖X and ‖χ‖X , because this implies that the pull-backs of ϕ and χ along the free evolution, as 
maps from R to H 1(R3), have finite quadratic variation, see [3,7] for the details. �
4. The Dirac–Klein–Gordon system

Let Pλ be the standard Littlewood–Paley projections onto dyadic frequencies of size λ, and take HN to be the 
projection onto angular frequencies of size N , see [8, Section 2] for precise definitions. If s � 0 and σ = 0, we define

‖f ‖Ds
0(I ) = ‖〈∇〉sf ‖L4(I×R3).

On the other hand, for s � 0 and σ > 0, we take

‖f ‖Ds
σ (I ) =

( ∑
N�1

N2σ ‖〈∇〉sHNf ‖2
L4(I×R3)

) 1
2
.

The results in Section 2 imply that for smooth solutions (1.2) and (2.3) are equivalent, so that we focus on proving 
the following.

Theorem 4.1. Let z ∈C, |z| = 1. Suppose that either s > 0 = σ and 2M > m > 0, or σ > 0 = s and M, m > 0. There 
exist 0 < c < 1 and γ > 1, such that for any A � 1 and any ε � c exp(−Aγ ), if

‖ϕ(0)‖Hs
σ (R3) � ε, ‖χ(0)‖Hs

σ (R3) �A, ‖φ+(0)‖
H

1
2 +s

σ (R3)

� A,

then the system (2.3) is globally well-posed and scatters to free solutions as t → ±∞, i.e. there exist ϕ±∞ ∈ Hs
σ (R3), 

χ±∞ ∈ Hs
σ (R3) and φ±∞ ∈ H

1
2 +s
σ (R3), such that

lim
t→±∞‖ϕ(t) − UM(t)ϕ±∞‖Hs

σ
= 0, lim

t→±∞‖χ(t) − UM(t)χ±∞‖Hs
σ

= 0,

and lim
t→±∞‖φ+(t) − U+

m (t)φ±∞‖
H

s+ 1
2

σ

= 0.

Before we turn to its proof, we summarise the results we require from [8].

Lemma 4.2. Let s, σ ∈ R, and I be any interval of the form I = [t1, t2), −∞ < t1 < t2 ≤ ∞. There exist Banach 
function spaces Fs,σ

M (I) and Vs,σ
+,m(I ) and C0 � 1 with the following properties:

(i) C∞
0 (I ×R

3; C4) ⊂ Fs,σ
M (I), C∞

0 (I ×R
3; C) ⊂ Vs,σ

+,m(I ), and

Fs,σ
M (I) ↪→ Cb(I ;Hs

σ (R3;C4)), Vs,σ
+,m(I ) ↪→ Cb(I ;Hs

σ (R3;C)).

(ii) For ψ ∈ Fs,σ
M (I), φ+ ∈ Vs,σ

+,m(I ), and for any I ′ = [s1, s2) ⊂ I , we have ψ |I ′ ∈ Fs,σ
M (I ′), φ+|I ′ ∈ Vs,σ

+,m(I ′), and

‖ψ |I ′‖Fs,σ
M (I ′) � C0‖ψ‖Fs,σ

M (I), ‖φ+|I ′ ‖
V

s+ 1
2 ,σ

+,m (I ′)
� C0‖φ‖

V
s+ 1

2 ,σ

+,m (I )

.

(iii) For ψ0 ∈ Hs
σ (R3; C4) and φ0 ∈ Hs

σ (R3; C) we have UM(t)ψ0 ∈ Fs,σ
M (I), U+

m (t)φ0 ∈ Vs,σ
+,m(I ), and the bounds

‖UMψ0‖Fs,σ
M (I) � ‖ψ0‖Hs

σ
, ‖U+

m φ0‖Vs,σ
+,m(I ) � ‖φ0‖Hs

σ
. (4.1)
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(iv) For ψ ∈ Fs,σ
M ([t1, t2)) and φ+ ∈ Vs,σ

+,m([t1, t2)) the limits

lim
t→t2

UM(−t)ψ(t) ∈ Hs(R3;C4) and lim
t→t2

U+
m (−t)φ+(t) ∈ Hs(R3;C)

exist.

(v) For φ+ ∈ V
s+ 1

2 ,σ

+,m (I ) we have the Strichartz-type estimate

‖φ+‖Ds
σ (I ) � C0‖φ+‖

V
s+ 1

2 ,σ

+,m (I )

. (4.2)

(vi) Suppose that either s > 0 = σ and 2M > m > 0, or σ > 0 = s and M, m > 0. There exists θ ∈ (0, 1), such that 
for any t0 ∈ I the Duhamel operators

V
s+ 1

2 ,σ

+,m (I ) × Fs,σ
M (I) � (φ+, ϕ) �→ IM

t0
(Re(φ+)ϕ) ∈ Fs,σ

M (I),

Fs,σ
M (I) × Fs,σ

M (I) � (χ,ϕ) �→ I+,m
t0

(〈∇〉−1
m (χϕ)) ∈ V

s+ 1
2 ,σ

+,m (I )

are well-defined and the following estimates hold:

‖IM
t0

(Re(φ+)ϕ)‖Fs,σ
M (I) � C0‖φ+‖θ

Ds
σ (I )‖φ+‖1−θ

V
s+ 1

2 ,σ

+,m (I )

‖ϕ‖Fs,σ
M (I), (4.3)

‖I+,m
t0

(〈∇〉−1
m (χϕ))‖

V
s+ 1

2 ,σ

+,m (I )

� C0‖χ‖Fs,σ
M (I)‖ϕ‖Fs,σ

M (I). (4.4)

Proof. For details see Section 2, Lemma 2.1, and Theorem 3.2 in [8]. �
The first step in the proof of Theorem 4.1, is to prove the following local result.

Theorem 4.3. Suppose that either s > 0 = σ and 2M > m > 0, or σ > 0 = s and M, m > 0. There exist θ, c ∈ (0, 1)

and C > 1, such that for any A, B � 1 and any 0 < α � cA−1 and 0 < β � cB
θ−1
θ , and for any interval I = [t1, t2) ⊂

R and t0 ∈ I , if we have

‖ϕ0‖Hs
σ (R3) � α, ‖χ0‖Hs

σ (R3) �A,

and

‖U+
m (· − t0)φ0‖Ds

σ (I ) � β, ‖φ0‖
H

1
2 +s

σ (R3)

� B,

then there exists a unique solution (ϕ, χ, φ+) ∈ Fs,σ
M (I) ×Fs,σ

M (I) ×V
s+ 1

2 ,σ

+,m (I ) of (2.3) on I ×R
3 with initial condition 

(ϕ, χ, φ+)(t0) = (ϕ0, χ0, φ0). Moreover the solution depends continuously on the initial data and satisfies the bounds

sup
t∈I

‖ϕ(t)‖Hs
σ (R3) � 2‖ϕ0‖Hs

σ (R3), sup
t∈I

‖χ(t)‖Hs
σ (R3) � 2‖χ0‖Hs

σ (R3),

sup
t∈I

‖φ+(t) − U+
m (t − t0)φ0(t0)‖

H
1
2 +s

σ (R3)

� C‖ϕ0‖Hs
σ (R3)‖χ0‖Hs

σ (R3).

Proof. For convenience, let ϕL(t) = UM(t − t0)ϕ0, χL(t) = UM(t − t0)χ0, and φ+,L(t) = U+
m (t − t0)φ0. Let C0 � 1

and θ ∈ (0, 1) be as in Lemma 4.2. Define S as the set of all (ϕ, χ, φ+) ∈ Fs,σ
M (I) × Fs,σ

M (I) × V
s+ 1

2 ,σ

+,m (I ) satisfying

‖ϕ − ϕL‖Fs,σ
M (I) � ‖ϕ0‖Hs

σ
, ‖χ − χL‖Fs,σ

M (I) � ‖χ0‖Hs
σ
,

‖φ+ − φ+,L‖
V

s+ 1
2 ,σ

+,m (I )

� 23C0‖ϕ0‖Hs
σ
‖χ0‖Hs

σ
.

It is a complete metric space with respect to the norm

‖(ϕ,χ,φ+)‖S := α−1‖ϕ‖Fs,σ
M (I) + A−1‖χ‖Fs,σ

M (I) + η−1‖φ+‖
V

s+ 1
2 ,σ

(I )

,

+,m
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where η > 0 will be chosen later. Let

T = (T1, T2, T3) : Fs,σ
M (I) × Fs,σ

M (I) × V
s+ 1

2 ,σ

+,m (I ) → Fs,σ
M (I) × Fs,σ

M (I) × V
s+ 1

2 ,σ

+,m (I )

be defined as

T (ϕ,χ,φ+) =
⎛
⎜⎝

UM(· − t0)ϕ0 + IM
t0

(Re(φ+)ϕ)

UM(· − t0)χ0 + IM
t0

(Re(φ+)χ)

U+
m (· − t0)φ+,0 + I+,m

t0
(〈∇〉−1

m (ϕχ + χϕ))

⎞
⎟⎠ ,

see Lemma 4.2. Fixed points of T are solutions of (2.3) with the given data at time t0. For (ϕ, χ, φ+) ∈ S we infer 
that

‖ϕ‖Fs,σ
M (I) � ‖ϕ − ϕL‖Fs,σ

M (I) + ‖ϕL‖Fs,σ
M (I) � 2‖ϕ0‖Hs

σ
� 2α,

‖χ‖Fs,σ
M (I) � ‖χ − χL‖Fs,σ

M (I) + ‖χL‖Fs,σ
M (I) � 2‖χ0‖Hs

σ
� 2A,

and similarly,

‖φ+,L‖θ
Ds

σ (I )‖φ+,L‖1−θ

V
s+ 1

2 ,σ

+,m (I )

� βθB1−θ ,

‖φ+ − φ+,L‖θ
Ds

σ (I )‖φ+ − φ+,L‖1−θ

V
s+ 1

2 ,σ

+,m (I )

� 23C1+θ
0 ‖ϕ0‖Hs

σ
‖χ0‖Hs

σ
� 23C2

0αA.

If α � (25C3
0A)−1 and β � (4C0B

1−θ )− 1
θ , Lemma 4.2 implies

‖T1(ϕ,χ,φ+) − ϕL‖Fs,σ
M (I) �

(
2C0β

θB1−θ + 24C3
0αA

)‖ϕ0‖Hs
σ
� ‖ϕ0‖Hs

σ
, (4.5)

and

‖T2(ϕ,χ,φ+) − χL‖Fs,σ
M (I) �

(
2C0β

θB1−θ + 24C3
0αA

)‖χ0‖Hs
σ
� ‖χ0‖Hs

σ
, (4.6)

as well as

‖T3(ϕ,χ,φ+) − φ+,L‖
V

s+ 1
2 ,σ

+,m (I )

� 23C0‖ϕ0‖Hs
σ
‖χ0‖Hs

σ
. (4.7)

We will now show that T : S → S is a contraction, provided that α, β are chosen small enough. Let (ϕ, χ, φ+) ∈ S

and (ϕ̃, χ̃ , φ̃+) ∈ S. Then, by Lemma 4.2,

‖T1(ϕ,χ,φ+) − T1(ϕ̃, χ̃ , φ̃+)‖Fs,σ
M (I) �

(
C0β

θB1−θ + 23C3
0αA

)‖ϕ − ϕ̃‖Fs,σ
M (I)

+ 2C2
0α‖φ+ − φ̃+‖

V
s+ 1

2 ,σ

+,m (I )

,

and

‖T2(ϕ,χ,φ+) − T2(ϕ̃, χ̃ , φ̃+)‖Fs,σ
M (I) �

(
C0β

θB1−θ + 23C3
0αA

)‖χ − χ̃‖Fs,σ
M (I)

+ 2C2
0A‖φ+ − φ̃+‖

V
s+ 1

2 ,σ

+,m (I )

,

as well as

‖T3(ϕ,χ,φ+) − T3(ϕ̃, χ̃ , φ̃+)‖
V

s+ 1
2 ,σ

+,m (I )

� 22C0α‖χ − χ̃‖Fs,σ
M (I) + 22C0A‖ϕ − ϕ̃‖Fs,σ

M (I).

We obtain

‖T (ϕ,χ,φ+) − T (ϕ̃, χ̃ , φ̃+)‖S � 4C2
0ηη−1‖φ+ − φ̃+‖

V
s+ 1

2 ,σ

+,m (I )

+ (
C0β

θB1−θ + 23C3
0αA + 22C0Aαη−1)α−1‖ϕ − ϕ̃‖Fs,σ

M (I)

+ (
C0β

θB1−θ + 23C3
0αA + 22C0Aαη−1)A−1‖χ − χ̃‖Fs,σ

M (I).
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By fixing η = (24C2
0)−1, and choosing α � (212C3

0A)−1 and β � (24C0B
1−θ )− 1

θ , we have verified that T : S → S

is a contraction, hence it has a fixed point (ϕ, χ, φ+) ∈ S which is unique in S. For later purposes we note that we 
have chosen the thresholds for α and β small enough such that the same conclusion holds if α, A, and B are doubled. 
Similar estimates show that the fixed point depends continuously on the initial data. Due to (4.1), the claimed estimates 
on the Sobolev norms for (ϕ(t), χ(t), φ+(t)) for t ∈ I follow from (4.5), (4.6) and (4.7).

Finally, we prove uniqueness. Assume that (ϕ′, χ ′, φ′+) ∈ Fs,σ
M (I) × Fs,σ

M (I) × V
s+ 1

2 ,σ

+,m (I ) is another solution with 
the same data at t0 such that

t ′ := sup{t ∈ I | (ϕ′, χ ′, φ′+)(t) = (ϕ,χ,φ+)(t)} < t2.

Then,

‖ϕ′(t ′)‖Hs
σ
� 2α, ‖χ ′(t ′)‖Hs

σ
� 2A, ‖φ′+(t ′)‖

H
1
2 +s

σ

� 2B.

Let ‖φ′+‖
V

s+ 1
2 ,σ

+,m (I )

≤ R. By Lemma 4.2 we have

‖φ′+‖Ds
σ (I ′) � C0‖φ′+‖

V
s+ 1

2 ,σ

+,m (I ′)
� C2

0R

for any I ′ ⊆ I . For ε ∈ (0, β) (which will be specified below), let δ > 0 be small enough such that I ′ := [t ′, t ′ + δ) ⊂ I

and ‖φ′+‖Ds
σ (I ′) � ε. Let ϕ′

L(t) := UM(t − t ′)ϕ(t ′), χ ′
L(t) := UM(t − t ′)χ(t ′), and φ′+,L(t) := U+

m (t − t ′)φ+(t ′). Then,

‖ϕ′ − ϕ′
L‖Fs,σ

M (I ′) � C0ε
θR1−θ

(‖ϕ′ − ϕ′
L‖Fs,σ

M (I ′) + ‖ϕ′
L‖Fs,σ

M (I ′)
)
,

so that if we fix some ε � (2C0R
1−θ )− 1

θ , we obtain

‖ϕ′ − ϕ′
L‖Fs,σ

M (I ′) � ‖ϕ(t ′)‖Hs
σ
.

A similar estimate shows

‖χ ′ − χ ′
L‖Fs,σ

M (I ′) � ‖χ(t ′)‖Hs
σ
.

Then,

‖φ′+ − φ′+,L‖
V

s+ 1
2 ,σ

+,m (I ′)
� 23C0‖ϕ(t ′)‖Hs

σ
‖χ(t ′)‖Hs

σ
.

These estimates show that (ϕ′, χ ′, φ′+) is contained in the set S defined as above, but with the modified initial condition 
at t ′ instead of t0 and the interval I ′ instead of I . Also, the estimates with I replaced by I ′ in the first part of the proof 
imply that (ϕ, χ, φ+)|I ′ is contained in this version of the set S. The uniqueness within S proven above implies that 
(ϕ′, χ ′, φ′+) = (ϕ, χ, φ+) in I ′, which contradicts the definition of t ′. �

We can now prove Theorem 4.1 as follows. By our hypothesis, the initial data at time 0 satisfy

‖ϕ0‖Hs
σ
� ε, ‖χ0‖Hs

σ
�A, ‖φ0‖

H
1
2 +s

σ

�A,

and ε > 0 is chosen small enough, depending on A only (the precise threshold will be specified below). Let β∗(B) =
cB

θ−1
θ and α∗(A) = cA−1 be the thresholds as in Theorem 4.3. Then, by the Strichartz estimate from Lemma 4.2 (v), 

we have

‖U+
m (t)φ0‖Ds

σ (R+) � C0A

with C0 � 1. By monotone convergence, the function T �→ ‖U+
m (t)φ0‖Ds

σ ([T0,T )) is continuous in T and converges to 
zero as T ↘ T0. Therefore, for β := β∗(2A), we can choose 0 = s0 < s1 < . . . < sN such that

‖U+
m (t)φ0‖Ds

σ ([sn−1,sn)) = β/4 and ‖U+
m (t)φ0‖Ds

σ ([sn,∞)) � β/4.

With sN+1 = ∞, define the collection of intervals In = [sn−1, sn+1) for n = 1, ..., N . Then,
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β/4 � ‖U+
m (t)φ0‖Ds

σ (In) � β/2

and, by Minkowski’s inequality,

N∑
n=1

‖U+
m (t)φ0‖4

Ds
σ (In) � 2(C0A)4,

therefore N � N0 := 26(C0A)4β−4.
Now, fix ε � cC−1C−1

0 2−2N0A−1β . We claim that for every 1 � n � N , on In we have a unique solution 

(ϕ(n), χ(n), φ(n)
+ ) ∈ Fs,σ

M (In) × Fs,σ
M (In) × V

s+ 1
2 ,σ

+,m (In) with initial condition

(ϕ(n), χ(n), φ
(n)
+ )(sn−1) = (ϕ(n−1), χ(n−1), φ

(n−1)
+ )(sn−1) (if 2 � n� N)

(ϕ(1), χ(1), φ
(1)
+ )(s0) = (ϕ0, χ0, φ0) (if n = 1)

which satisfies the bounds∥∥U+
m (· − sn−1)φ

(n−1)
+ (sn−1)

∥∥
Ds

σ (In)
� β,

‖ϕ(n)(sn)‖Hs
σ
� 2nε, ‖χ(n)(sn)‖Hs

σ
� 2nA,

‖φ(n)
+ (sn) − U+

m (sn)φ0‖
H

1
2 +s

σ

� C22nεA,

(4.8)

where C is the constant from Theorem 4.3. Indeed, for n = 1 the estimate in the first line follows by definition of I1, 
and the estimates in the second and third line follow from an application of Theorem 4.3 (with t0 = 0), where we use 
that ε � α∗(A) and β � β∗(A). As an induction hypothesis, let us suppose that holds (4.8) for some 1 � n � N − 1.

By Lemma 4.2, the induction hypothesis, and the choice of ε we have
∥∥U+

m (· − sn)φ
(n)
+ (sn)

∥∥
Ds

σ (In+1)
� ‖U+

m φ0‖Ds
σ (In+1)

+ ∥∥U+
m

(
φ0 − U+

m (−sn)φ
(n)
+ (sn)

)∥∥
Ds

σ (In+1)

� β/2 + C0
∥∥φ0 − U+

m (−sn)φ
(n)
+ (sn)

∥∥
H

1
2 +s

σ

� β/2 + CC022nεA � β.

From the estimate in the third line of the induction hypothesis and the smallness condition on ε we obtain

‖φ(n)
+ (sn)‖

H
1
2 +s

σ

� ‖U+
m (sn)φ0‖

H
1
2 +s

σ

+ C22nεA� A + C22nεA � 2A.

Notice that due to our choices we have β � β∗(2A) and 2nε � α∗(2nA). Then, as sn+1 ∈ In+1, we obtain from 
Theorem 4.3 (with t0 = sn) that

‖ϕ(n+1)(sn+1)‖Hs
σ
� 2‖ϕ(n)(sn)‖Hs

σ
� 2n+1ε,

‖χ(n+1)(sn+1)‖Hs
σ
� 2‖χ(n)(sn)‖Hs

σ
� 2n+1A,

and, using the induction hypothesis again,

‖φ(n+1)
+ (sn+1) − U+

m (sn+1)φ0‖
H

1
2 +s

σ

� ‖φ(n+1)
+ (sn+1) − U+

m (sn+1 − sn)φ
(n)
+ (sn)‖

H
1
2 +s

σ

+ ‖U+
m (sn+1 − sn)φ

(n)
+ (sn) − U+

m (sn+1)φ0‖
H

1
2 +s

σ

� C22nεA + C22nεA � C22(n+1)εA.

The proof of the claim is complete.
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By uniqueness, we have constructed a global solution

(ϕ,χ,φ+) ∈ Cb(R+,H s
σ ) × Cb(R+,H s

σ ) × Cb(R+,H
1
2 +s
σ ),

and due to (ϕ, χ, φ+)|[sN ,∞) ∈ Fs,σ
M ([sN , ∞)) × Fs,σ

M ([sN , ∞)) × V
s+ 1

2 ,σ

+,m ([sN , ∞)) it scatters as t → ∞, see 
Lemma 4.2 Part (iv). The claim for t → −∞ follows by time reversibility. Continuous dependence also follows 
from the local result, we omit the details. This completes the proof of Theorem 4.1.

Conflict of interest statement

There is no conflict of interests.

References

[1] Alain Bachelot, Global existence of large amplitude solutions for Dirac–Klein–Gordon systems in Minkowski space, in: Nonlinear Hyperbolic 
Problems, Bordeaux, 1988, in: Lecture Notes in Math., vol. 1402, Springer, Berlin, 1989, pp. 99–113, MR 1033278.

[2] Alain Bachelot, Global existence of large amplitude solutions for nonlinear massless Dirac equation, in: Workshop on Hyperbolic Systems 
and Mathematical Physics, Lisbon, 1988, Port. Math. 46 (suppl.) (1989) 455–473, MR 1080766.

[3] Ioan Bejenaru, Sebastian Herr, The cubic Dirac equation: small initial data in H 1(R3), Commun. Math. Phys. 335 (1) (2015) 43–82, MR 
3314499.

[4] Ioan Bejenaru, Sebastian Herr, The cubic Dirac equation: small initial data in H
1
2 (R2), Commun. Math. Phys. 343 (2) (2016) 515–562, MR 

3477346.
[5] Ioan Bejenaru, Sebastian Herr, On global well-posedness and scattering for the massive Dirac–Klein–Gordon system, J. Eur. Math. Soc. 19 (8) 

(2017) 2445–2467, MR 3668064.
[6] James D. Bjorken, Sidney D. Drell, Relativistic Quantum Mechanics, McGraw-Hill Book Co., New York, Toronto, London, 1964, MR 

0187641.
[7] Nikolaos Bournaveas, Timothy Candy, Global well-posedness for the massless cubic Dirac equation, Int. Math. Res. Not. 2016 (22) (2016) 

6735–6828, MR 3632067.
[8] Timothy Candy, Sebastian Herr, Conditional large data scattering results for the Dirac–Klein–Gordon system, arXiv:1709.09556 [math.AP].
[9] Timothy Candy, Sebastian Herr, Transference of bilinear restriction estimates to quadratic variation norms and the Dirac–Klein–Gordon 

system, Anal. PDE (2018), in press, arXiv:1605.04882 [math.AP].
[10] John M. Chadam, Robert T. Glassey, On certain global solutions of the Cauchy problem for the (classical) coupled Klein–Gordon–Dirac 

equations in one and three space dimensions, Arch. Ration. Mech. Anal. 54 (1974) 223–237, MR 0369952 (51 #6181).
[11] Piero D’Ancona, Mamoru Okamoto, On the cubic Dirac equation with potential and the Lochak–Majorana condition, J. Math. Anal. Appl. 

456 (2017) 1203–1237.
[12] Steven R. Elliott, Marcel Franz, Colloquium: Majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys. 87 (2015) 

137–163.
[13] Georges Lochak, Wave equation for a magnetic monopole, Int. J. Theor. Phys. 24 (10) (1985) 1019–1050.
[14] Ettore Majorana, Teoria simmetrica dell’elettrone e del positrone, Nuovo Cimento 14 (4) (1937) 171–184.
[15] Tohru Ozawa, Kazuyuki Yamauchi, Structure of Dirac matrices and invariants for nonlinear Dirac equations, Differ. Integral Equ. 17 (9–10) 

(2004) 971–982, MR 2082456.
[16] Bernd Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992, MR 1219537.

http://refhub.elsevier.com/S0294-1449(18)30013-1/bib42616368656C6F7431393838s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib42616368656C6F7431393838s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib42616368656C6F7431393839s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib42616368656C6F7431393839s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib42656A656E6172753230313461s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib42656A656E6172753230313461s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib42656A656E6172753230313562s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib42656A656E6172753230313562s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib42656A656E61727532303135s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib42656A656E61727532303135s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib426A6F726B656E31393634s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib426A6F726B656E31393634s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib426F75726E617665617332303135s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib426F75726E617665617332303135s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib43616E64793230313761s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib43616E647932303138s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib43616E647932303138s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib43686164616D31393734s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib43686164616D31393734s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib4427416E636F6E6132303137s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib4427416E636F6E6132303137s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib656C6C696F747432303135s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib656C6C696F747432303135s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib4C6F6368616B31393835s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib4D616A6F72616E6131393337s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib4F7A61776132303034s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib4F7A61776132303034s1
http://refhub.elsevier.com/S0294-1449(18)30013-1/bib5468616C6C6572s1

	On the Majorana condition for nonlinear Dirac systems
	1 Introduction
	2 Initial reductions
	3 Cubic Dirac equation
	4 The Dirac-Klein-Gordon system
	Conﬂict of interest statement
	References


