Sobolev regularity for first order mean field games
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1557-1576.

In this paper we obtain Sobolev estimates for weak solutions of first order variational Mean Field Game systems with coupling terms that are local functions of the density variable. Under some coercivity conditions on the coupling, we obtain first order Sobolev estimates for the density variable, while under similar coercivity conditions on the Hamiltonian we obtain second order Sobolev estimates for the value function. These results are valid both for stationary and time-dependent problems. In the latter case the estimates are fully global in time, thus we resolve a question which was left open in [23]. Our methods apply to a large class of Hamiltonians and coupling functions.

DOI : 10.1016/j.anihpc.2018.01.002
Classification : 49K20, 35Q91, 49N60, 49N15, 49N70
Mots clés : Mean field games, Hamilton–Jacobi equations, Sobolev regularity of the solutions
@article{AIHPC_2018__35_6_1557_0,
     author = {Jameson Graber, P. and M\'esz\'aros, Alp\'ar R.},
     title = {Sobolev regularity for first order mean field games},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1557--1576},
     publisher = {Elsevier},
     volume = {35},
     number = {6},
     year = {2018},
     doi = {10.1016/j.anihpc.2018.01.002},
     mrnumber = {3846236},
     zbl = {1397.49054},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.002/}
}
TY  - JOUR
AU  - Jameson Graber, P.
AU  - Mészáros, Alpár R.
TI  - Sobolev regularity for first order mean field games
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1557
EP  - 1576
VL  - 35
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.002/
DO  - 10.1016/j.anihpc.2018.01.002
LA  - en
ID  - AIHPC_2018__35_6_1557_0
ER  - 
%0 Journal Article
%A Jameson Graber, P.
%A Mészáros, Alpár R.
%T Sobolev regularity for first order mean field games
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1557-1576
%V 35
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.002/
%R 10.1016/j.anihpc.2018.01.002
%G en
%F AIHPC_2018__35_6_1557_0
Jameson Graber, P.; Mészáros, Alpár R. Sobolev regularity for first order mean field games. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1557-1576. doi : 10.1016/j.anihpc.2018.01.002. http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.002/

[1] Ambrosio, L.; Crippa, G. Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, Transport Equations and Multi-D Hyperbolic Conservation Laws, Lect. Notes Unione Mat. Ital., vol. 5, Springer, Berlin, 2008, pp. 3–57 | DOI | MR | Zbl

[2] Ambrosio, L.; Figalli, A. On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations, Calc. Var. Partial Differ. Equ., Volume 31 (2008) no. 4, pp. 497–509 | DOI | MR | Zbl

[3] Brenier, Y. Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations, Commun. Pure Appl. Math., Volume 52 (1999) no. 4, pp. 411–452 | DOI | MR | Zbl

[4] Cardaliaguet, P. Weak solutions for first order mean field games with local coupling, Analysis and Geometry in Control Theory and Its Applications, Springer INdAM Ser., vol. 11, Springer, Cham, 2015, pp. 111–158 | DOI | MR | Zbl

[5] Cardaliaguet, P.; Graber, P.J. Mean field games systems of first order, ESAIM Control Optim. Calc. Var., Volume 21 (2015) no. 3, pp. 690–722 | DOI | Numdam | MR | Zbl

[6] Cardaliaguet, P.; Graber, P.J.; Porretta, A.; Tonon, D. Second order mean field games with degenerate diffusion and local coupling, Nonlinear Differ. Equ. Appl., Volume 22 (2015) no. 5, pp. 1287–1317 | DOI | MR | Zbl

[7] Cardaliaguet, P.; Lasry, J.-M.; Lions, P.-L.; Porretta, A. Long time average of mean field games, Netw. Heterog. Media, Volume 7 (2012) no. 2, pp. 279–301 | DOI | MR | Zbl

[8] Cardaliaguet, P.; Lasry, J.-M.; Lions, P.-L.; Porretta, A. Long time average of mean field games with a nonlocal coupling, SIAM J. Control Optim., Volume 51 (2013) no. 5, pp. 3558–3591 | DOI | MR | Zbl

[9] Cardaliaguet, P.; Mészáros, A.R.; Santambrogio, F. First order mean field games with density constraints: pressure equals price, SIAM J. Control Optim., Volume 54 (2016) no. 5, pp. 2672–2709 | DOI | MR | Zbl

[10] Cardaliaguet, P.; Porretta, A.; Tonon, D. Sobolev regularity for the first order Hamilton–Jacobi equation, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 3, pp. 3037–3065 | DOI | MR | Zbl

[11] Evans, L.C. Adjoint and compensated compactness methods for Hamilton–Jacobi PDE, Arch. Ration. Mech. Anal., Volume 197 (2010) no. 3, pp. 1053–1088 | DOI | MR | Zbl

[12] P.J. Graber, A.R. Mészáros, On the planning problem in the theory of mean field games, in preparation.

[13] Gomes, D.A.; Pimentel, E.A.; Sánchez-Morgado, H. Time-dependent mean-field games in the subquadratic case, Commun. Partial Differ. Equ., Volume 40 (2015) no. 1, pp. 40–76 | DOI | MR

[14] Gomes, D.A.; Pimentel, E.; Sánchez-Morgado, H. Time-dependent mean-field games in the superquadratic case, ESAIM Control Optim. Calc. Var., Volume 22 (2016) no. 2, pp. 562–580 | DOI | Numdam | MR | Zbl

[15] Gomes, D.A.; Pimentel, E.; Voskanyan, V. Regularity Theory for Mean-Field Game Systems, Springer Briefs in Mathematics, Springer, Cham, 2016 | DOI | MR

[16] Huang, M.; Malhamé, R.P.; Caines, P.E. Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., Volume 6 (2006) no. 3, pp. 221–251 | MR | Zbl

[17] Lasry, J.-M.; Lions, P.-L. Jeux à champ moyen I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, Volume 343 (2006), pp. 619–625 | MR | Zbl

[18] Lasry, J.-M.; Lions, P.-L. Jeux à champ moyen II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, Volume 343 (2006), pp. 679–684 | MR | Zbl

[19] Lasry, J.-M.; Lions, P.-L. Mean field games, Jpn. J. Math., Volume 2 (2007), pp. 229–260 | MR | Zbl

[20] H. Lavenant, F. Santambrogio, Optimal density evolution with congestion: L bounds via flow interchange techniques and applications to variational mean field games, preprint, 2017. | MR

[21] Lions, P.-L. Cours au Collège de France www.college-de-france.fr (2007–2011)

[22] Porretta, A. Weak solutions to Fokker–Planck equations and mean field games, Arch. Ration. Mech. Anal., Volume 216 (2015) no. 1, pp. 1–62 | DOI | MR | Zbl

[23] Prosinski, A.; Santambrogio, F. Global-in-time regularity via duality for congestion-penalized mean field games, Stochastics, Volume 89 (2017) no. 6–7 | MR | Zbl

[24] Santambrogio, F. Regularity via duality in calculus of variations and degenerate elliptic PDEs, J. Math. Anal. Appl., Volume 457 (2018) no. 2, pp. 1649–1674 | DOI | MR | Zbl

Cité par Sources :