Mean field games systems of first order
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 690-722.

We consider a first-order system of mean field games with local coupling in the deterministic limit. Under general structure conditions on the Hamiltonian and coupling, we prove existence and uniqueness of the weak solution, characterizing this solution as the minimizer of some optimal control of Hamilton−Jacobi and continuity equations. We also prove that this solution converges in the long time average to the solution of the associated ergodic problem.

DOI : 10.1051/cocv/2014044
Classification : 35Q91, 49K20
Mots-clés : Mean field games, Hamilton−Jacobi equations, optimal control, nonlinear PDE, transport theory, long time average
Cardaliaguet, Pierre 1 ; Graber, P. Jameson 2

1 Ceremade, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France
2 Commands team (ENSTA ParisTech, INRIA Saclay), 828, Boulevard des Maréchaux, 91762 Palaiseau cedex, France
@article{COCV_2015__21_3_690_0,
     author = {Cardaliaguet, Pierre and Graber, P. Jameson},
     title = {Mean field games systems of first order},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {690--722},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {3},
     year = {2015},
     doi = {10.1051/cocv/2014044},
     zbl = {1319.35273},
     mrnumber = {3358627},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2014044/}
}
TY  - JOUR
AU  - Cardaliaguet, Pierre
AU  - Graber, P. Jameson
TI  - Mean field games systems of first order
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 690
EP  - 722
VL  - 21
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2014044/
DO  - 10.1051/cocv/2014044
LA  - en
ID  - COCV_2015__21_3_690_0
ER  - 
%0 Journal Article
%A Cardaliaguet, Pierre
%A Graber, P. Jameson
%T Mean field games systems of first order
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 690-722
%V 21
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2014044/
%R 10.1051/cocv/2014044
%G en
%F COCV_2015__21_3_690_0
Cardaliaguet, Pierre; Graber, P. Jameson. Mean field games systems of first order. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 690-722. doi : 10.1051/cocv/2014044. https://www.numdam.org/articles/10.1051/cocv/2014044/

L. Ambrosio and G. Crippa, Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, Transport equations and multi-D hyperbolic conservation laws. Springer (2008) 3–57. | MR | Zbl

P. Cardaliaguet, Long time average of first order mean field games and weak KAM theory. Dyn. Games Appl. 3 (2013) 473–488. | DOI | MR | Zbl

P. Cardaliaguet, Weak solutions for first order mean field games with local coupling. Preprint arXiv:1305.7015 (2013). | MR

P. Cardaliaguet and L. Silvestre, Hölder continuity to Hamilton−Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side. Comm. Partial Differ. Eq. 37 (2012) 1668–1688. | DOI | MR | Zbl

P. Cardaliaguet, G. Carlier, and B. Nazaret, Geodesics for a class of distances in the space of probability measures. Calc. Var. Partial Differ. Eq. (2012) 1–26. | MR | Zbl

P. Cardaliaguet, J.-M. Lasry, P.-Louis Lions and A. Porretta, et al., Long time average of mean field games. Networks and Heterogeneous Media 7 (2012) 279–301. | DOI | MR | Zbl

P. Cardaliaguet, J.-Michel Lasry, P.-L. Lions and A. Porretta, Long time average of mean field games with a nonlocal coupling. SIAM J. Control Optim. 51 (2013) 3558–3591. | DOI | MR | Zbl

Benamou, J.-David. and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. | DOI | MR | Zbl

I. Ekeland and R. Temam, Convex analysis and variational problems, vol. 28, SIAM (1976). | MR

L.C. Evans, Some new PDE methods for weak KAM theory. Calc. Var. Partial Differ. Eq. 17 (2003) 159–177. | DOI | MR | Zbl

D.A. Gomes D.A., J. Mohr, and R.R. Souza, Discrete time, finite state space mean field games. J. Math. Pures Appl. 93 (2010) 308–328. | DOI | MR | Zbl

D.A. Gomes, E. Pimentel and H. Sánchez-Morgado, Time dependent mean-field games in the superquadratic case. Preprint arXiv:1311.6684 (2013). | MR

D.A. Gomes, E. Pimentel, and H. Sánchez-Morgado, Time dependent mean-field games in the superquadratic case. Commun. Partial Differ. Eq. 40 (2015) 40–76. | DOI | MR | Zbl

P.J. Graber, Optimal control of first-order Hamilton−Jacobi equations with linearly bounded Hamiltonian. Appl. Math. Optimization 70 (2014) 185–224. | DOI | MR | Zbl

M. Huang, P.E. Caines and R.P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ε-Nash equilibria. Automatic Control, IEEE Transactions 52 (2007) 1560–1571. | DOI | MR | Zbl

M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean−Vlasov systems and the Nash certainty equivalence principle. Comm. Inform. Syst. 6 (2006) 221–252. | DOI | MR | Zbl

E. Kosygina and S.R.S. Varadhan, Homogenization of Hamilton−Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium. Comm. Pure Appl. Math. 61 (2008) 816–847. | DOI | MR | Zbl

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. i − le cas stationnaire. C. R. Math. 343 (2006) 619–625. | DOI | MR | Zbl

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. ii − horizon fini et contrôle optimal. C. R. Math. 343 (2006) 679–684. | DOI | MR | Zbl

J.-M. Lasry and P.-L. Lions, Mean field games. Japan. J. Math. 2 (2007) 229–260. | DOI | MR | Zbl

P.-L. Lions, Théorie des jeux de champ moyen et applications (mean field games), Cours du College de France. http://www.college-de-france.fr/site/pierre-louis-lions/ 2009 (2007).

A. Porretta, Weak solutions to Fokker-Planck equations and mean field games. Arch. Ration. Mech. Anal. 216 (2015) 1–62. | DOI | MR | Zbl

  • Collins, Carson; Jacobs, Matt; Kim, Inwon Regularity and Nondegeneracy for Tumor Growth with Nutrients, Archive for Rational Mechanics and Analysis, Volume 249 (2025) no. 1 | DOI:10.1007/s00205-024-02081-w
  • Bocchi, Gabriele; Porretta, Alessio Entropy-minimizing dynamical transport on Riemannian manifolds, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 2 | DOI:10.1007/s00526-024-02920-4
  • Liu, Hongyu; Lo, Catharine W K Determining state space anomalies in mean field games, Nonlinearity, Volume 38 (2025) no. 2, p. 025010 | DOI:10.1088/1361-6544/ada67d
  • Graber, P. Jameson Remarks on potential mean field games, Research in the Mathematical Sciences, Volume 12 (2025) no. 1 | DOI:10.1007/s40687-024-00494-3
  • Ni, Panrui Time periodic solutions of first order mean field games from the perspective of Mather theory, Journal of Differential Equations, Volume 412 (2024), p. 881 | DOI:10.1016/j.jde.2024.09.006
  • Séguret, Adrien An optimal control problem for the continuity equation arising in smart charging, Journal of Mathematical Analysis and Applications, Volume 531 (2024) no. 1, p. 127891 | DOI:10.1016/j.jmaa.2023.127891
  • Wang, Guofang; Fang, Jing; Jiang, Lulu; Yao, Wang; Li, Ning Coupled Alternating Neural Networks for Solving Multi-Population High-Dimensional Mean-Field Games, Mathematics, Volume 12 (2024) no. 23, p. 3803 | DOI:10.3390/math12233803
  • Mimikos-Stamatopoulos, Nikiforos; Munoz, Sebastian Regularity and Long Time Behavior of One-Dimensional First-Order Mean Field Games and the Planning Problem, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 1, p. 43 | DOI:10.1137/23m1547779
  • Mészáros, Alpár R.; Mou, Chenchen Mean Field Games Systems under Displacement Monotonicity, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 1, p. 529 | DOI:10.1137/22m1534353
  • Bressan, Alberto; Nguyen, Khai T. Generic Properties of First-Order Mean Field Games, Dynamic Games and Applications, Volume 13 (2023) no. 3, p. 750 | DOI:10.1007/s13235-022-00487-3
  • Chowdhury, Indranil; Ersland, Olav; Jakobsen, Espen R. On Numerical Approximations of Fractional and Nonlocal Mean Field Games, Foundations of Computational Mathematics, Volume 23 (2023) no. 4, p. 1381 | DOI:10.1007/s10208-022-09572-w
  • Liu, Hongyu; Mou, Chenchen; Zhang, Shen Inverse problems for mean field games, Inverse Problems, Volume 39 (2023) no. 8, p. 085003 | DOI:10.1088/1361-6420/acdd90
  • Graber, P. Jameson; Sircar, Ronnie Master equation for Cournot mean field games of control with absorption, Journal of Differential Equations, Volume 343 (2023), p. 816 | DOI:10.1016/j.jde.2022.10.031
  • Porretta, Alessio Regularizing effects of the entropy functional in optimal transport and planning problems, Journal of Functional Analysis, Volume 284 (2023) no. 3, p. 109759 | DOI:10.1016/j.jfa.2022.109759
  • Yu, Jiajia; Lai, Rongjie; Li, Wuchen; Osher, Stanley A fast proximal gradient method and convergence analysis for dynamic mean field planning, Mathematics of Computation, Volume 93 (2023) no. 346, p. 603 | DOI:10.1090/mcom/3879
  • Hu, Xiaotian; Wang, Kaizhi Existence of solutions to contact mean-field games of first order, Advanced Nonlinear Studies, Volume 22 (2022) no. 1, p. 289 | DOI:10.1515/ans-2022-0012
  • Cecchin, Alekos; Delarue, François Selection by vanishing common noise for potential finite state mean field games, Communications in Partial Differential Equations, Volume 47 (2022) no. 1, p. 89 | DOI:10.1080/03605302.2021.1955256
  • Griffin-Pickering, Megan; Mészáros, Alpár R. A variational approach to first order kinetic mean field games with local couplings, Communications in Partial Differential Equations, Volume 47 (2022) no. 10, p. 1945 | DOI:10.1080/03605302.2022.2101003
  • BARKER, MATT; DEGOND, PIERRE; WOLFRAM, MARIE-THERESE Comparing the best-reply strategy and mean-field games: The stationary case, European Journal of Applied Mathematics, Volume 33 (2022) no. 1, p. 79 | DOI:10.1017/s0956792520000376
  • Ye, Hailong; Zou, Wenzhong; Liu, Qiang Strong Solution for Fractional Mean Field Games with Non-Separable Hamiltonians, Fractal and Fractional, Volume 6 (2022) no. 7, p. 362 | DOI:10.3390/fractalfract6070362
  • Wang, Guofang; Li, Ziming; Yao, Wang; Xia, Sikai A Multi-Population Mean-Field Game Approach for Large-Scale Agents Cooperative Attack-Defense Evolution in High-Dimensional Environments, Mathematics, Volume 10 (2022) no. 21, p. 4075 | DOI:10.3390/math10214075
  • Bagagiolo, Fabio; Festa, Adriano; Marzufero, Luciano Hybrid control for optimal visiting problems for a single player and for a crowd, Nonlinear Differential Equations and Applications NoDEA, Volume 29 (2022) no. 1 | DOI:10.1007/s00030-021-00737-0
  • Andrade, Pêdra D. S.; Pimentel, Edgard A. Stationary fully nonlinear mean-field games, Journal d'Analyse Mathématique, Volume 145 (2021) no. 1, p. 335 | DOI:10.1007/s11854-021-0193-0
  • Jameson Graber, P.; Ignazio, Vincenzo; Neufeld, Ariel Nonlocal Bertrand and Cournot mean field games with general nonlinear demand schedule, Journal de Mathématiques Pures et Appliquées, Volume 148 (2021), p. 150 | DOI:10.1016/j.matpur.2021.02.002
  • Barilla, César; Carlier, Guillaume; Lasry, Jean-Michel A mean field game model for the evolution of cities, Journal of Dynamics Games, Volume 8 (2021) no. 3, p. 299 | DOI:10.3934/jdg.2021017
  • Cirant, Marco; Gomes, Diogo A.; Pimentel, Edgard A.; Sánchez-Morgado, Héctor On some singular mean-field games, Journal of Dynamics Games, Volume 8 (2021) no. 4, p. 445 | DOI:10.3934/jdg.2021006
  • Bardi, Martino; Cardaliaguet, Pierre Convergence of some Mean Field Games systems to aggregation and flocking models, Nonlinear Analysis, Volume 204 (2021), p. 112199 | DOI:10.1016/j.na.2020.112199
  • Ferreira, Rita; Gomes, Diogo; Tada, Teruo Existence of weak solutions to time-dependent mean-field games, Nonlinear Analysis, Volume 212 (2021), p. 112470 | DOI:10.1016/j.na.2021.112470
  • Graber, P. Jameson; Mullenix, Alan; Pfeiffer, Laurent Weak solutions for potential mean field games of controls, Nonlinear Differential Equations and Applications NoDEA, Volume 28 (2021) no. 5 | DOI:10.1007/s00030-021-00712-9
  • Lin, Alex Tong; Fung, Samy Wu; Li, Wuchen; Nurbekyan, Levon; Osher, Stanley J. Alternating the population and control neural networks to solve high-dimensional stochastic mean-field games, Proceedings of the National Academy of Sciences, Volume 118 (2021) no. 31 | DOI:10.1073/pnas.2024713118
  • Mayorga, Sergio Short time solution to the master equation of a first order mean field game, Journal of Differential Equations, Volume 268 (2020) no. 10, p. 6251 | DOI:10.1016/j.jde.2019.11.031
  • Achdou, Yves; Laurière, Mathieu Mean Field Games and Applications: Numerical Aspects, Mean Field Games, Volume 2281 (2020), p. 249 | DOI:10.1007/978-3-030-59837-2_4
  • Carrillo, José A.; Pimentel, Edgard A.; Voskanyan, Vardan K. On a mean field optimal control problem, Nonlinear Analysis, Volume 199 (2020), p. 112039 | DOI:10.1016/j.na.2020.112039
  • Mei, Hongwei; Zhu, Chao Closed-Loop Equilibrium for Time-Inconsistent McKean–Vlasov Controlled Problem, SIAM Journal on Control and Optimization, Volume 58 (2020) no. 6, p. 3842 | DOI:10.1137/20m1319796
  • Cesaroni, Annalisa; Cirant, Marco Concentration of ground states in stationary mean-field games systems, Analysis PDE, Volume 12 (2019) no. 3, p. 737 | DOI:10.2140/apde.2019.12.737
  • Cardaliaguet, Pierre; Porretta, Alessio Long time behavior of the master equation in mean field game theory, Analysis PDE, Volume 12 (2019) no. 6, p. 1397 | DOI:10.2140/apde.2019.12.1397
  • Graber, P. Jameson; Mészáros, Alpár R.; Silva, Francisco J.; Tonon, Daniela The planning problem in mean field games as regularized mass transport, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 3 | DOI:10.1007/s00526-019-1561-9
  • Cesaroni, Annalisa; Cirant, Marco Introduction to Variational Methods for Viscous Ergodic Mean-Field Games with Local Coupling, Contemporary Research in Elliptic PDEs and Related Topics, Volume 33 (2019), p. 221 | DOI:10.1007/978-3-030-18921-1_5
  • Cirant, Marco; Tonon, Daniela Time-Dependent Focusing Mean-Field Games: The Sub-critical Case, Journal of Dynamics and Differential Equations, Volume 31 (2019) no. 1, p. 49 | DOI:10.1007/s10884-018-9667-x
  • Orrieri, Carlo; Porretta, Alessio; Savaré, Giuseppe A variational approach to the mean field planning problem, Journal of Functional Analysis, Volume 277 (2019) no. 6, p. 1868 | DOI:10.1016/j.jfa.2019.04.011
  • Lavenant, Hugo; Santambrogio, Filippo New estimates on the regularity of the pressure in density‐constrained mean field games, Journal of the London Mathematical Society, Volume 100 (2019) no. 2, p. 644 | DOI:10.1112/jlms.12245
  • Cirant, Marco; Goffi, Alessandro On the Existence and Uniqueness of Solutions to Time-Dependent Fractional MFG, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 2, p. 913 | DOI:10.1137/18m1216420
  • Delarue, François Restoring uniqueness to mean-field games by randomizing the equilibria, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 7 (2019) no. 4, p. 598 | DOI:10.1007/s40072-019-00135-9
  • Jameson Graber, P.; Mészáros, Alpár R. Sobolev regularity for first order mean field games, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 35 (2018) no. 6, p. 1557 | DOI:10.1016/j.anihpc.2018.01.002
  • Graber, P. Jameson; Bensoussan, Alain Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games, Applied Mathematics Optimization, Volume 77 (2018) no. 1, p. 47 | DOI:10.1007/s00245-016-9366-0
  • Brenier, Yann The Initial Value Problem for the Euler Equations of Incompressible Fluids Viewed as a Concave Maximization Problem, Communications in Mathematical Physics, Volume 364 (2018) no. 2, p. 579 | DOI:10.1007/s00220-018-3240-7
  • Lavenant, Hugo; Santambrogio, Filippo Optimal density evolution with congestion: L∞ bounds via flow interchange techniques and applications to variational Mean Field Games, Communications in Partial Differential Equations, Volume 43 (2018) no. 12, p. 1761 | DOI:10.1080/03605302.2018.1499116
  • Gomes, Diogo A.; Nurbekyan, Levon; Prazeres, Mariana One-Dimensional Stationary Mean-Field Games with Local Coupling, Dynamic Games and Applications, Volume 8 (2018) no. 2, p. 315 | DOI:10.1007/s13235-017-0223-9
  • Ambrose, David M. Strong solutions for time-dependent mean field games with non-separable Hamiltonians, Journal de Mathématiques Pures et Appliquées, Volume 113 (2018), p. 141 | DOI:10.1016/j.matpur.2018.03.003
  • Evangelista, David; Ferreira, Rita; Gomes, Diogo A.; Nurbekyan, Levon; Voskanyan, Vardan First-order, stationary mean-field games with congestion, Nonlinear Analysis, Volume 173 (2018), p. 37 | DOI:10.1016/j.na.2018.03.011
  • Graber, Philip Jameson; Mouzouni, Charafeddine Variational Mean Field Games for Market Competition, PDE Models for Multi-Agent Phenomena, Volume 28 (2018), p. 93 | DOI:10.1007/978-3-030-01947-1_5
  • Carmona, René; Delarue, François Stochastic Differential Mean Field Games, Probabilistic Theory of Mean Field Games with Applications I, Volume 83 (2018), p. 129 | DOI:10.1007/978-3-319-58920-6_3
  • Carmona, René; Delarue, François Optimal Control of SDEs of McKean-Vlasov Type, Probabilistic Theory of Mean Field Games with Applications I, Volume 83 (2018), p. 513 | DOI:10.1007/978-3-319-58920-6_6
  • Carmona, René; Delarue, François MFGs with a Common Noise: Strong and Weak Solutions, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 107 | DOI:10.1007/978-3-319-56436-4_2
  • Carmona, René; Delarue, François Solving MFGs with a Common Noise, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 155 | DOI:10.1007/978-3-319-56436-4_3
  • Carmona, René; Delarue, François The Master Field and the Master Equation, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 239 | DOI:10.1007/978-3-319-56436-4_4
  • Carmona, René; Delarue, François Optimization in a Random Environment, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 3 | DOI:10.1007/978-3-319-56436-4_1
  • Carmona, René; Delarue, François Classical Solutions to the Master Equation, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 323 | DOI:10.1007/978-3-319-56436-4_5
  • Carmona, René; Delarue, François Convergence and Approximations, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 447 | DOI:10.1007/978-3-319-56436-4_6
  • Carmona, René; Delarue, François Extensions for Volume II, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 541 | DOI:10.1007/978-3-319-56436-4_7
  • Bricen͂o-Arias, L. M.; Kalise, D.; Silva, F. J. Proximal Methods for Stationary Mean Field Games with Local Couplings, SIAM Journal on Control and Optimization, Volume 56 (2018) no. 2, p. 801 | DOI:10.1137/16m1095615
  • Mészáros, Alpár Richárd; Silva, Francisco J. On the Variational Formulation of Some Stationary Second-Order Mean Field Games Systems, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 1, p. 1255 | DOI:10.1137/17m1125960
  • Ferreira, Rita; Gomes, Diogo Existence of Weak Solutions to Stationary Mean-Field Games through Variational Inequalities, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 6, p. 5969 | DOI:10.1137/16m1106705
  • Benamou, Jean-David; Carlier, Guillaume; Santambrogio, Filippo Variational Mean Field Games, Active Particles, Volume 1 (2017), p. 141 | DOI:10.1007/978-3-319-49996-3_4
  • Cardaliaguet, Pierre; Porretta, Alessio; Tonon, Daniela A Segregation Problem in Multi-Population Mean Field Games, Advances in Dynamic and Mean Field Games, Volume 15 (2017), p. 49 | DOI:10.1007/978-3-319-70619-1_3
  • Porretta, Alessio On the weak theory for mean field games systems, Bollettino dell'Unione Matematica Italiana, Volume 10 (2017) no. 3, p. 411 | DOI:10.1007/s40574-016-0105-x
  • Almulla, Noha; Ferreira, Rita; Gomes, Diogo Two Numerical Approaches to Stationary Mean-Field Games, Dynamic Games and Applications, Volume 7 (2017) no. 4, p. 657 | DOI:10.1007/s13235-016-0203-5
  • Turinici, Gabriel Metric gradient flows with state dependent functionals: The Nash-MFG equilibrium flows and their numerical schemes, Nonlinear Analysis, Volume 165 (2017), p. 163 | DOI:10.1016/j.na.2017.10.002
  • Prosinski, Adam; Santambrogio, Filippo Global-in-time regularity via duality for congestion-penalized Mean Field Games, Stochastics, Volume 89 (2017) no. 6-7, p. 923 | DOI:10.1080/17442508.2017.1282958
  • Graber, P. Jameson Linear Quadratic Mean Field Type Control and Mean Field Games with Common Noise, with Application to Production of an Exhaustible Resource, Applied Mathematics Optimization, Volume 74 (2016) no. 3, p. 459 | DOI:10.1007/s00245-016-9385-x
  • Gomes, Diogo A.; Nurbekyan, Levon; Sedjro, Marc One-Dimensional Forward–Forward Mean-Field Games, Applied Mathematics Optimization, Volume 74 (2016) no. 3, p. 619 | DOI:10.1007/s00245-016-9384-y
  • Cirant, Marco Stationary focusing mean-field games, Communications in Partial Differential Equations, Volume 41 (2016) no. 8, p. 1324 | DOI:10.1080/03605302.2016.1192647
  • Gomes, Diogo A.; Patrizi, Stefania Weakly coupled mean-field game systems, Nonlinear Analysis, Volume 144 (2016), p. 110 | DOI:10.1016/j.na.2016.05.017
  • Cardaliaguet, Pierre; Mészáros, Alpár R.; Santambrogio, Filippo First Order Mean Field Games with Density Constraints: Pressure Equals Price, SIAM Journal on Control and Optimization, Volume 54 (2016) no. 5, p. 2672 | DOI:10.1137/15m1029849
  • Cesaroni, Annalisa; Dirr, Nicolas; Marchi, Claudio Homogenization of a Mean Field Game System in the Small Noise Limit, SIAM Journal on Mathematical Analysis, Volume 48 (2016) no. 4, p. 2701 | DOI:10.1137/16m1063459
  • Cardaliaguet, Pierre; Porretta, Alessio; Tonon, Daniela Sobolev regularity for the first order Hamilton–Jacobi equation, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 3, p. 3037 | DOI:10.1007/s00526-015-0893-3
  • Benamou, Jean-David; Carlier, Guillaume Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations, Journal of Optimization Theory and Applications, Volume 167 (2015) no. 1, p. 1 | DOI:10.1007/s10957-015-0725-9
  • Cardaliaguet, Pierre; Graber, P. Jameson; Porretta, Alessio; Tonon, Daniela Second order mean field games with degenerate diffusion and local coupling, Nonlinear Differential Equations and Applications NoDEA, Volume 22 (2015) no. 5, p. 1287 | DOI:10.1007/s00030-015-0323-4

Cité par 78 documents. Sources : Crossref