We consider a first-order system of mean field games with local coupling in the deterministic limit. Under general structure conditions on the Hamiltonian and coupling, we prove existence and uniqueness of the weak solution, characterizing this solution as the minimizer of some optimal control of Hamilton−Jacobi and continuity equations. We also prove that this solution converges in the long time average to the solution of the associated ergodic problem.
Mots-clés : Mean field games, Hamilton−Jacobi equations, optimal control, nonlinear PDE, transport theory, long time average
@article{COCV_2015__21_3_690_0, author = {Cardaliaguet, Pierre and Graber, P. Jameson}, title = {Mean field games systems of first order}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {690--722}, publisher = {EDP-Sciences}, volume = {21}, number = {3}, year = {2015}, doi = {10.1051/cocv/2014044}, zbl = {1319.35273}, mrnumber = {3358627}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2014044/} }
TY - JOUR AU - Cardaliaguet, Pierre AU - Graber, P. Jameson TI - Mean field games systems of first order JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 690 EP - 722 VL - 21 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014044/ DO - 10.1051/cocv/2014044 LA - en ID - COCV_2015__21_3_690_0 ER -
%0 Journal Article %A Cardaliaguet, Pierre %A Graber, P. Jameson %T Mean field games systems of first order %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 690-722 %V 21 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014044/ %R 10.1051/cocv/2014044 %G en %F COCV_2015__21_3_690_0
Cardaliaguet, Pierre; Graber, P. Jameson. Mean field games systems of first order. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 690-722. doi : 10.1051/cocv/2014044. https://www.numdam.org/articles/10.1051/cocv/2014044/
L. Ambrosio and G. Crippa, Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, Transport equations and multi-D hyperbolic conservation laws. Springer (2008) 3–57. | MR | Zbl
Long time average of first order mean field games and weak KAM theory. Dyn. Games Appl. 3 (2013) 473–488. | DOI | MR | Zbl
,P. Cardaliaguet, Weak solutions for first order mean field games with local coupling. Preprint arXiv:1305.7015 (2013). | MR
Hölder continuity to Hamilton−Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side. Comm. Partial Differ. Eq. 37 (2012) 1668–1688. | DOI | MR | Zbl
and ,P. Cardaliaguet, G. Carlier, and B. Nazaret, Geodesics for a class of distances in the space of probability measures. Calc. Var. Partial Differ. Eq. (2012) 1–26. | MR | Zbl
Long time average of mean field games. Networks and Heterogeneous Media 7 (2012) 279–301. | DOI | MR | Zbl
, , and , et al.,Long time average of mean field games with a nonlocal coupling. SIAM J. Control Optim. 51 (2013) 3558–3591. | DOI | MR | Zbl
, , and ,A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. | DOI | MR | Zbl
. and ,I. Ekeland and R. Temam, Convex analysis and variational problems, vol. 28, SIAM (1976). | MR
Some new PDE methods for weak KAM theory. Calc. Var. Partial Differ. Eq. 17 (2003) 159–177. | DOI | MR | Zbl
,Discrete time, finite state space mean field games. J. Math. Pures Appl. 93 (2010) 308–328. | DOI | MR | Zbl
, , and ,D.A. Gomes, E. Pimentel and H. Sánchez-Morgado, Time dependent mean-field games in the superquadratic case. Preprint arXiv:1311.6684 (2013). | MR
Time dependent mean-field games in the superquadratic case. Commun. Partial Differ. Eq. 40 (2015) 40–76. | DOI | MR | Zbl
, , and ,Optimal control of first-order Hamilton−Jacobi equations with linearly bounded Hamiltonian. Appl. Math. Optimization 70 (2014) 185–224. | DOI | MR | Zbl
,
Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized
Large population stochastic dynamic games: closed-loop McKean−Vlasov systems and the Nash certainty equivalence principle. Comm. Inform. Syst. 6 (2006) 221–252. | DOI | MR | Zbl
, and ,Homogenization of Hamilton−Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium. Comm. Pure Appl. Math. 61 (2008) 816–847. | DOI | MR | Zbl
and ,Jeux à champ moyen. i − le cas stationnaire. C. R. Math. 343 (2006) 619–625. | DOI | MR | Zbl
and ,Jeux à champ moyen. ii − horizon fini et contrôle optimal. C. R. Math. 343 (2006) 679–684. | DOI | MR | Zbl
and ,Mean field games. Japan. J. Math. 2 (2007) 229–260. | DOI | MR | Zbl
and ,P.-L. Lions, Théorie des jeux de champ moyen et applications (mean field games), Cours du College de France. http://www.college-de-france.fr/site/pierre-louis-lions/ 2009 (2007).
Weak solutions to Fokker-Planck equations and mean field games. Arch. Ration. Mech. Anal. 216 (2015) 1–62. | DOI | MR | Zbl
,- Regularity and Nondegeneracy for Tumor Growth with Nutrients, Archive for Rational Mechanics and Analysis, Volume 249 (2025) no. 1 | DOI:10.1007/s00205-024-02081-w
- Entropy-minimizing dynamical transport on Riemannian manifolds, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 2 | DOI:10.1007/s00526-024-02920-4
- Determining state space anomalies in mean field games, Nonlinearity, Volume 38 (2025) no. 2, p. 025010 | DOI:10.1088/1361-6544/ada67d
- Remarks on potential mean field games, Research in the Mathematical Sciences, Volume 12 (2025) no. 1 | DOI:10.1007/s40687-024-00494-3
- Time periodic solutions of first order mean field games from the perspective of Mather theory, Journal of Differential Equations, Volume 412 (2024), p. 881 | DOI:10.1016/j.jde.2024.09.006
- An optimal control problem for the continuity equation arising in smart charging, Journal of Mathematical Analysis and Applications, Volume 531 (2024) no. 1, p. 127891 | DOI:10.1016/j.jmaa.2023.127891
- Coupled Alternating Neural Networks for Solving Multi-Population High-Dimensional Mean-Field Games, Mathematics, Volume 12 (2024) no. 23, p. 3803 | DOI:10.3390/math12233803
- Regularity and Long Time Behavior of One-Dimensional First-Order Mean Field Games and the Planning Problem, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 1, p. 43 | DOI:10.1137/23m1547779
- Mean Field Games Systems under Displacement Monotonicity, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 1, p. 529 | DOI:10.1137/22m1534353
- Generic Properties of First-Order Mean Field Games, Dynamic Games and Applications, Volume 13 (2023) no. 3, p. 750 | DOI:10.1007/s13235-022-00487-3
- On Numerical Approximations of Fractional and Nonlocal Mean Field Games, Foundations of Computational Mathematics, Volume 23 (2023) no. 4, p. 1381 | DOI:10.1007/s10208-022-09572-w
- Inverse problems for mean field games, Inverse Problems, Volume 39 (2023) no. 8, p. 085003 | DOI:10.1088/1361-6420/acdd90
- Master equation for Cournot mean field games of control with absorption, Journal of Differential Equations, Volume 343 (2023), p. 816 | DOI:10.1016/j.jde.2022.10.031
- Regularizing effects of the entropy functional in optimal transport and planning problems, Journal of Functional Analysis, Volume 284 (2023) no. 3, p. 109759 | DOI:10.1016/j.jfa.2022.109759
- A fast proximal gradient method and convergence analysis for dynamic mean field planning, Mathematics of Computation, Volume 93 (2023) no. 346, p. 603 | DOI:10.1090/mcom/3879
- Existence of solutions to contact mean-field games of first order, Advanced Nonlinear Studies, Volume 22 (2022) no. 1, p. 289 | DOI:10.1515/ans-2022-0012
- Selection by vanishing common noise for potential finite state mean field games, Communications in Partial Differential Equations, Volume 47 (2022) no. 1, p. 89 | DOI:10.1080/03605302.2021.1955256
- A variational approach to first order kinetic mean field games with local couplings, Communications in Partial Differential Equations, Volume 47 (2022) no. 10, p. 1945 | DOI:10.1080/03605302.2022.2101003
- Comparing the best-reply strategy and mean-field games: The stationary case, European Journal of Applied Mathematics, Volume 33 (2022) no. 1, p. 79 | DOI:10.1017/s0956792520000376
- Strong Solution for Fractional Mean Field Games with Non-Separable Hamiltonians, Fractal and Fractional, Volume 6 (2022) no. 7, p. 362 | DOI:10.3390/fractalfract6070362
- A Multi-Population Mean-Field Game Approach for Large-Scale Agents Cooperative Attack-Defense Evolution in High-Dimensional Environments, Mathematics, Volume 10 (2022) no. 21, p. 4075 | DOI:10.3390/math10214075
- Hybrid control for optimal visiting problems for a single player and for a crowd, Nonlinear Differential Equations and Applications NoDEA, Volume 29 (2022) no. 1 | DOI:10.1007/s00030-021-00737-0
- Stationary fully nonlinear mean-field games, Journal d'Analyse Mathématique, Volume 145 (2021) no. 1, p. 335 | DOI:10.1007/s11854-021-0193-0
- Nonlocal Bertrand and Cournot mean field games with general nonlinear demand schedule, Journal de Mathématiques Pures et Appliquées, Volume 148 (2021), p. 150 | DOI:10.1016/j.matpur.2021.02.002
- A mean field game model for the evolution of cities, Journal of Dynamics Games, Volume 8 (2021) no. 3, p. 299 | DOI:10.3934/jdg.2021017
- On some singular mean-field games, Journal of Dynamics Games, Volume 8 (2021) no. 4, p. 445 | DOI:10.3934/jdg.2021006
- Convergence of some Mean Field Games systems to aggregation and flocking models, Nonlinear Analysis, Volume 204 (2021), p. 112199 | DOI:10.1016/j.na.2020.112199
- Existence of weak solutions to time-dependent mean-field games, Nonlinear Analysis, Volume 212 (2021), p. 112470 | DOI:10.1016/j.na.2021.112470
- Weak solutions for potential mean field games of controls, Nonlinear Differential Equations and Applications NoDEA, Volume 28 (2021) no. 5 | DOI:10.1007/s00030-021-00712-9
- Alternating the population and control neural networks to solve high-dimensional stochastic mean-field games, Proceedings of the National Academy of Sciences, Volume 118 (2021) no. 31 | DOI:10.1073/pnas.2024713118
- Short time solution to the master equation of a first order mean field game, Journal of Differential Equations, Volume 268 (2020) no. 10, p. 6251 | DOI:10.1016/j.jde.2019.11.031
- Mean Field Games and Applications: Numerical Aspects, Mean Field Games, Volume 2281 (2020), p. 249 | DOI:10.1007/978-3-030-59837-2_4
- On a mean field optimal control problem, Nonlinear Analysis, Volume 199 (2020), p. 112039 | DOI:10.1016/j.na.2020.112039
- Closed-Loop Equilibrium for Time-Inconsistent McKean–Vlasov Controlled Problem, SIAM Journal on Control and Optimization, Volume 58 (2020) no. 6, p. 3842 | DOI:10.1137/20m1319796
- Concentration of ground states in stationary mean-field games systems, Analysis PDE, Volume 12 (2019) no. 3, p. 737 | DOI:10.2140/apde.2019.12.737
- Long time behavior of the master equation in mean field game theory, Analysis PDE, Volume 12 (2019) no. 6, p. 1397 | DOI:10.2140/apde.2019.12.1397
- The planning problem in mean field games as regularized mass transport, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 3 | DOI:10.1007/s00526-019-1561-9
- Introduction to Variational Methods for Viscous Ergodic Mean-Field Games with Local Coupling, Contemporary Research in Elliptic PDEs and Related Topics, Volume 33 (2019), p. 221 | DOI:10.1007/978-3-030-18921-1_5
- Time-Dependent Focusing Mean-Field Games: The Sub-critical Case, Journal of Dynamics and Differential Equations, Volume 31 (2019) no. 1, p. 49 | DOI:10.1007/s10884-018-9667-x
- A variational approach to the mean field planning problem, Journal of Functional Analysis, Volume 277 (2019) no. 6, p. 1868 | DOI:10.1016/j.jfa.2019.04.011
- New estimates on the regularity of the pressure in density‐constrained mean field games, Journal of the London Mathematical Society, Volume 100 (2019) no. 2, p. 644 | DOI:10.1112/jlms.12245
- On the Existence and Uniqueness of Solutions to Time-Dependent Fractional MFG, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 2, p. 913 | DOI:10.1137/18m1216420
- Restoring uniqueness to mean-field games by randomizing the equilibria, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 7 (2019) no. 4, p. 598 | DOI:10.1007/s40072-019-00135-9
- Sobolev regularity for first order mean field games, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 35 (2018) no. 6, p. 1557 | DOI:10.1016/j.anihpc.2018.01.002
- Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games, Applied Mathematics Optimization, Volume 77 (2018) no. 1, p. 47 | DOI:10.1007/s00245-016-9366-0
- The Initial Value Problem for the Euler Equations of Incompressible Fluids Viewed as a Concave Maximization Problem, Communications in Mathematical Physics, Volume 364 (2018) no. 2, p. 579 | DOI:10.1007/s00220-018-3240-7
- Optimal density evolution with congestion: L∞ bounds via flow interchange techniques and applications to variational Mean Field Games, Communications in Partial Differential Equations, Volume 43 (2018) no. 12, p. 1761 | DOI:10.1080/03605302.2018.1499116
- One-Dimensional Stationary Mean-Field Games with Local Coupling, Dynamic Games and Applications, Volume 8 (2018) no. 2, p. 315 | DOI:10.1007/s13235-017-0223-9
- Strong solutions for time-dependent mean field games with non-separable Hamiltonians, Journal de Mathématiques Pures et Appliquées, Volume 113 (2018), p. 141 | DOI:10.1016/j.matpur.2018.03.003
- First-order, stationary mean-field games with congestion, Nonlinear Analysis, Volume 173 (2018), p. 37 | DOI:10.1016/j.na.2018.03.011
- Variational Mean Field Games for Market Competition, PDE Models for Multi-Agent Phenomena, Volume 28 (2018), p. 93 | DOI:10.1007/978-3-030-01947-1_5
- Stochastic Differential Mean Field Games, Probabilistic Theory of Mean Field Games with Applications I, Volume 83 (2018), p. 129 | DOI:10.1007/978-3-319-58920-6_3
- Optimal Control of SDEs of McKean-Vlasov Type, Probabilistic Theory of Mean Field Games with Applications I, Volume 83 (2018), p. 513 | DOI:10.1007/978-3-319-58920-6_6
- MFGs with a Common Noise: Strong and Weak Solutions, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 107 | DOI:10.1007/978-3-319-56436-4_2
- Solving MFGs with a Common Noise, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 155 | DOI:10.1007/978-3-319-56436-4_3
- The Master Field and the Master Equation, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 239 | DOI:10.1007/978-3-319-56436-4_4
- Optimization in a Random Environment, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 3 | DOI:10.1007/978-3-319-56436-4_1
- Classical Solutions to the Master Equation, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 323 | DOI:10.1007/978-3-319-56436-4_5
- Convergence and Approximations, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 447 | DOI:10.1007/978-3-319-56436-4_6
- Extensions for Volume II, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 541 | DOI:10.1007/978-3-319-56436-4_7
- Proximal Methods for Stationary Mean Field Games with Local Couplings, SIAM Journal on Control and Optimization, Volume 56 (2018) no. 2, p. 801 | DOI:10.1137/16m1095615
- On the Variational Formulation of Some Stationary Second-Order Mean Field Games Systems, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 1, p. 1255 | DOI:10.1137/17m1125960
- Existence of Weak Solutions to Stationary Mean-Field Games through Variational Inequalities, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 6, p. 5969 | DOI:10.1137/16m1106705
- Variational Mean Field Games, Active Particles, Volume 1 (2017), p. 141 | DOI:10.1007/978-3-319-49996-3_4
- A Segregation Problem in Multi-Population Mean Field Games, Advances in Dynamic and Mean Field Games, Volume 15 (2017), p. 49 | DOI:10.1007/978-3-319-70619-1_3
- On the weak theory for mean field games systems, Bollettino dell'Unione Matematica Italiana, Volume 10 (2017) no. 3, p. 411 | DOI:10.1007/s40574-016-0105-x
- Two Numerical Approaches to Stationary Mean-Field Games, Dynamic Games and Applications, Volume 7 (2017) no. 4, p. 657 | DOI:10.1007/s13235-016-0203-5
- Metric gradient flows with state dependent functionals: The Nash-MFG equilibrium flows and their numerical schemes, Nonlinear Analysis, Volume 165 (2017), p. 163 | DOI:10.1016/j.na.2017.10.002
- Global-in-time regularity via duality for congestion-penalized Mean Field Games, Stochastics, Volume 89 (2017) no. 6-7, p. 923 | DOI:10.1080/17442508.2017.1282958
- Linear Quadratic Mean Field Type Control and Mean Field Games with Common Noise, with Application to Production of an Exhaustible Resource, Applied Mathematics Optimization, Volume 74 (2016) no. 3, p. 459 | DOI:10.1007/s00245-016-9385-x
- One-Dimensional Forward–Forward Mean-Field Games, Applied Mathematics Optimization, Volume 74 (2016) no. 3, p. 619 | DOI:10.1007/s00245-016-9384-y
- Stationary focusing mean-field games, Communications in Partial Differential Equations, Volume 41 (2016) no. 8, p. 1324 | DOI:10.1080/03605302.2016.1192647
- Weakly coupled mean-field game systems, Nonlinear Analysis, Volume 144 (2016), p. 110 | DOI:10.1016/j.na.2016.05.017
- First Order Mean Field Games with Density Constraints: Pressure Equals Price, SIAM Journal on Control and Optimization, Volume 54 (2016) no. 5, p. 2672 | DOI:10.1137/15m1029849
- Homogenization of a Mean Field Game System in the Small Noise Limit, SIAM Journal on Mathematical Analysis, Volume 48 (2016) no. 4, p. 2701 | DOI:10.1137/16m1063459
- Sobolev regularity for the first order Hamilton–Jacobi equation, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 3, p. 3037 | DOI:10.1007/s00526-015-0893-3
- Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations, Journal of Optimization Theory and Applications, Volume 167 (2015) no. 1, p. 1 | DOI:10.1007/s10957-015-0725-9
- Second order mean field games with degenerate diffusion and local coupling, Nonlinear Differential Equations and Applications NoDEA, Volume 22 (2015) no. 5, p. 1287 | DOI:10.1007/s00030-015-0323-4
Cité par 78 documents. Sources : Crossref