We establish the existence of a global solution for a new family of fluid-like equations, which are obtained in certain regimes in [24] as the mean-field evolution of the supercurrent density in a (2D section of a) type-II superconductor with pinning and with imposed electric current. We also consider general vortex-sheet initial data, and investigate the uniqueness and regularity properties of the solution. For some choice of parameters, the equation under investigation coincides with the so-called lake equation from 2D shallow water fluid dynamics, and our analysis then leads to a new existence result for rough initial data.
@article{AIHPC_2018__35_5_1267_0, author = {Duerinckx, Mitia and Fischer, Julian}, title = {Well-posedness for mean-field evolutions arising in superconductivity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1267--1319}, publisher = {Elsevier}, volume = {35}, number = {5}, year = {2018}, doi = {10.1016/j.anihpc.2017.11.004}, mrnumber = {3813965}, zbl = {1393.35230}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.004/} }
TY - JOUR AU - Duerinckx, Mitia AU - Fischer, Julian TI - Well-posedness for mean-field evolutions arising in superconductivity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1267 EP - 1319 VL - 35 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.004/ DO - 10.1016/j.anihpc.2017.11.004 LA - en ID - AIHPC_2018__35_5_1267_0 ER -
%0 Journal Article %A Duerinckx, Mitia %A Fischer, Julian %T Well-posedness for mean-field evolutions arising in superconductivity %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1267-1319 %V 35 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.004/ %R 10.1016/j.anihpc.2017.11.004 %G en %F AIHPC_2018__35_5_1267_0
Duerinckx, Mitia; Fischer, Julian. Well-posedness for mean-field evolutions arising in superconductivity. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1267-1319. doi : 10.1016/j.anihpc.2017.11.004. http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.004/
[1] Vortices in Bose–Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, vol. 67, Birkhäuser Boston, Inc., Boston, MA, 2006 | DOI | MR | Zbl
[2] Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005 | MR | Zbl
[3] Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011) no. 2, pp. 217–246 | Numdam | MR | Zbl
[4] A gradient flow approach to an evolution problem arising in superconductivity, Commun. Pure Appl. Math., Volume 61 (2008) no. 11, pp. 1495–1539 | DOI | MR | Zbl
[5] The world of the complex Ginzburg–Landau equation, Rev. Mod. Phys., Volume 74 (2002), pp. 99–143 | DOI | MR | Zbl
[6] Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343, Springer, Heidelberg, 2011 | DOI | MR | Zbl
[7] Euler equations for an ideal incompressible fluid, Usp. Mat. Nauk, Volume 62 (2007) no. 3(375), pp. 5–46 | MR | Zbl
[8] Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions, Math. Models Methods Appl. Sci., Volume 22 (2012) no. suppl. 1 (39) | MR | Zbl
[9] Vortices in high-temperature superconductors, Rev. Mod. Phys., Volume 66 (1994) no. 4 | DOI
[10] Global existence and uniqueness for the lake equations with vanishing topography: elliptic estimates for degenerate equations, Nonlinearity, Volume 19 (2006) no. 3, pp. 591–610 | DOI | MR | Zbl
[11] Nonlinear Schrödinger evolution equations, Nonlinear Anal., Volume 4 (1980) no. 4, pp. 677–681 | DOI | MR | Zbl
[12] Nonlinear Phenomena in Ocean Dynamics, Physica D, Volume 98 (1996) no. 2–4, pp. 258–286 (Los Alamos, NM, 1995) | MR | Zbl
[13] Long-time shallow-water equations with a varying bottom, J. Fluid Mech., Volume 349 (1997), pp. 173–189 | DOI | MR | Zbl
[14] The derivation of swarming models: mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds, CISM International Centre for Mechanical Sciences, Springer, 2014, pp. 1–46 | DOI | MR
[15] Vortex pinning by inhomogeneities in type-II superconductors, Physica D, Volume 108 (1997), pp. 397–407 | DOI | MR | Zbl
[16] A mean-field model of superconducting vortices, Eur. J. Appl. Math., Volume 7 (1996) no. 2, pp. 97–111 | DOI | MR | Zbl
[17] Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998 | MR | Zbl
[18] Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978 (With an English summary) | Numdam | MR | Zbl
[19] Beijing Lectures in Harmonic Analysis, Ann. of Math. Stud., Volume vol. 112, Princeton Univ. Press, Princeton, NJ (1986), pp. 3–45 (Beijing, 1984) | MR | Zbl
[20] Existence de nappes de tourbillon en dimension deux, J. Am. Math. Soc., Volume 4 (1991) no. 3, pp. 553–586 | MR | Zbl
[21] Existence of weak solutions to some vortex density models, SIAM J. Math. Anal., Volume 34 (2003) no. 6, pp. 1279–1299 | MR | Zbl
[22] Mean-field limits for some Riesz interaction gradient flows, SIAM J. Math. Anal., Volume 48 (2015) no. 3, pp. 2269–2300 | DOI | MR
[23] Topics in the Mathematics of Disordered Media, Université Libre de Bruxelles and Université Pierre et Marie Curie, 2017 PhD thesis (supervised by A. Gloria and S. Serfaty)
[24] Mean-field dynamics for Ginzburg–Landau vortices with pinning and applied force, 2017 (Preprint) | arXiv | MR
[25] Dynamics of vortex liquids in Ginzburg–Landau theories with applications to superconductivity, Phys. Rev. B, Volume 50 (1994), pp. 1126–1135 | MR | Zbl
[26] The Theory of Rotating Fluids, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge, New York, 1980 (Reprint of the 1968 original) | MR
[27] Exact smoothing properties of Schrödinger semigroups, Am. J. Math., Volume 118 (1996) no. 6, pp. 1215–1248 | MR | Zbl
[28] Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 1997 | MR | Zbl
[29] Vortex dynamics for the two dimensional non homogeneous Gross–Pitaevskii equation, Ann. Sc. Norm. Super. Pisa, Volume 14 (2015) no. 3, pp. 729–766 | MR | Zbl
[30] Hydrodynamic limit of the Gross–Pitaevskii equation, Commun. Partial Differ. Equ., Volume 40 (2015) no. 2, pp. 135–190 | DOI | MR | Zbl
[31] Vortex dynamics of Ginzburg–Landau equations in inhomogeneous superconductors, J. Differ. Equ., Volume 170 (2001) no. 1, pp. 123–141 | MR | Zbl
[32] The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., Volume 29 (1998) no. 1, pp. 1–17 | DOI | MR | Zbl
[33] Commutator estimates and the Euler and Navier–Stokes equations, Commun. Pure Appl. Math., Volume 41 (1988) no. 7, pp. 891–907 | DOI | MR | Zbl
[34] Gross–Pitaevskii vortex motion with critically-scaled inhomogeneities, SIAM J. Math. Anal., Volume 49 (2017) no. 1, pp. 471–500 | DOI | MR | Zbl
[35] Vortex liquids and the Ginzburg–Landau equation, Forum Math. Sigma, Volume 2 (2014) (63) | DOI | MR | Zbl
[36] Global well-posedness for models of shallow water in a basin with a varying bottom, Indiana Univ. Math. J., Volume 45 (1996) no. 2, pp. 479–510 | DOI | MR | Zbl
[37] Global well-posedness for the lake equations, Physica D, Volume 98 (1996), pp. 492–509 | DOI | Zbl
[38] On Kato–Ponce and fractional Leibniz, 2016 (Preprint) | arXiv | Zbl
[39] On the hydrodynamic limit of Ginzburg–Landau vortices, Discrete Contin. Dyn. Syst., Volume 6 (2000) no. 1, pp. 121–142 | MR | Zbl
[40] Mathematical Topics in Fluid Mechanics: Vol. 2: Compressible Models, Oxford Lecture Series in Mathematics and its Applications, vol. 10, The Clarendon Press, Oxford University Press, Oxford Science Publications, New York, 1998 | MR | Zbl
[41] Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl. (9), Volume 86 (2006) no. 1, pp. 68–79 | DOI | MR | Zbl
[42] Global solutions to vortex density equations arising from sup-conductivity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 4, pp. 441–458 | DOI | Numdam | MR | Zbl
[43] An -estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Super. Pisa, Volume 17 (1963) no. 3, pp. 189–206 | Numdam | MR | Zbl
[44] Justification of the shallow water limit for a rigid lid flow with bottom topography, Theor. Comput. Fluid Dyn., Volume 9 (1997), pp. 311–324 | DOI | Zbl
[45] The geometry of dissipative evolution equations: the porous medium equation, Commun. Partial Differ. Equ., Volume 26 (2001) no. 1–2, pp. 101–174 | MR | Zbl
[46] La théorie de Gross–Pitaevskii pour un condensat de Bose–Einstein en rotation: vortex et transitions de phase, Université Pierre et Marie Curie, 2010 (PhD thesis)
[47] Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and their Applications, vol. 70, Birkhäuser Boston Inc., Boston, MA, 2007 | DOI | MR | Zbl
[48] Mean-field limits of the Gross–Pitaevskii and parabolic Ginzburg–Landau equations, J. Am. Math. Soc., Volume 30 (2017) no. 3, pp. 713–768 | DOI | MR | Zbl
[49] Ginzburg–Landau vortex dynamics with pinning and strong applied currents, Arch. Ration. Mech. Anal., Volume 201 (2011) no. 2, pp. 413–464 | DOI | MR | Zbl
[50] A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators, Calc. Var. Partial Differ. Equ., Volume 49 (2014) no. 3–4, pp. 1091–1120 | MR | Zbl
[51] Ginzburg–Landau vortex dynamics driven by an applied boundary current, Commun. Pure Appl. Math., Volume 63 (2010) no. 12, pp. 1622–1676 | DOI | MR | Zbl
[52] Superfluidity and Superconductivity, Adam Hilger, 1986
[53] Introduction to Superconductivity, McGraw-Hill Inc., 1996
[54] Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. Mat. Fiz., Volume 3 (1963), pp. 1032–1066 | MR | Zbl
Cité par Sources :