@article{AIHPC_2005__22_4_441_0, author = {Masmoudi, Nader and Zhang, Ping}, title = {Global solutions to vortex density equations arising from sup-conductivity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {441--458}, publisher = {Elsevier}, volume = {22}, number = {4}, year = {2005}, doi = {10.1016/j.anihpc.2004.07.002}, mrnumber = {2145721}, zbl = {1070.35036}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2004.07.002/} }
TY - JOUR AU - Masmoudi, Nader AU - Zhang, Ping TI - Global solutions to vortex density equations arising from sup-conductivity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 441 EP - 458 VL - 22 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2004.07.002/ DO - 10.1016/j.anihpc.2004.07.002 LA - en ID - AIHPC_2005__22_4_441_0 ER -
%0 Journal Article %A Masmoudi, Nader %A Zhang, Ping %T Global solutions to vortex density equations arising from sup-conductivity %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 441-458 %V 22 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2004.07.002/ %R 10.1016/j.anihpc.2004.07.002 %G en %F AIHPC_2005__22_4_441_0
Masmoudi, Nader; Zhang, Ping. Global solutions to vortex density equations arising from sup-conductivity. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 4, pp. 441-458. doi : 10.1016/j.anihpc.2004.07.002. http://www.numdam.org/articles/10.1016/j.anihpc.2004.07.002/
[1] A mean-field model of superconducting vortices, Eur. J. Appl. Math. 7 (1996) 97-111. | MR | Zbl
, , ,[2] Persistance de structures géométriques dans les fluides incompressibles bidimensionnels, Ann. Sci. École Norm. Sup. 26 (1993) 517-542. | Numdam | MR | Zbl
,[3] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989) 511-547. | MR | Zbl
, ,[4] On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2) 130 (1989) 321-366. | MR | Zbl
, ,[5] Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987) 667-689. | MR | Zbl
, ,[6] Existence of weak solutions to some vortex density models, SIAM J. Math. Anal. 34 (2003) 1279-1299. | MR | Zbl
, ,[7] Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 (1991) 553-586. | MR | Zbl
,[8] Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity, Arch. Rational Mech. Anal. 145 (1998) 99-127. | MR | Zbl
, , ,[9] Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS, vol. 74, Amer. Math. Soc., Providence, RI, 1990. | MR | Zbl
,[10] Dynamics of Ginzburg-Landau vortices, Arch. Rational Mech. Anal. 142 (1998) 99-125. | MR | Zbl
, ,[11] Focusing at a point and absorption of nonlinear oscillations, Trans. Amer. Math. Soc. 347 (1995) 3921-3970. | MR | Zbl
, , ,[12] Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 51 (1998) 323-359. | MR | Zbl
,[13] On the hydrodynamic limit of Ginzburg-Landau vortices, Discrete Contin. Dynam. Systems 6 (2000) 121-142. | MR | Zbl
, ,[14] Mathematical Topics in Fluid Mechanics, vol. 2, Compressible Models, Lecture Series in Mathematics and its Applications, vol. 6, Clarendon Press, Oxford, 1998. | MR | Zbl
,[15] Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B 21 (2000) 131-146. | MR | Zbl
, ,[16] Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations 7 (1982) 959-1000. | MR | Zbl
,[17] Compensated compactness and applications to partial differential equations, in: (Ed.), Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Research Notes in Math., vol. 39, Pitman, 1979. | MR | Zbl
,[18] On -vorticity for 2-D incompressible flow, Manuscripta Math. 78 (1993) 403-412. | MR | Zbl
, ,[19] Dynamics of vortex liquids in Ginsburg-Landau theories with application to superconductivity, Phys. Rev. B 50 (1994) 1126-1135. | Zbl
,[20] Lectures on the Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia, 1969. | MR | Zbl
,[21] Nonstationary flow of an ideal incompressible liquid, Zh. Vych. Math. 3 (1963) 1032-1066, (in Russian). English translation, USSR Comput. Math. Phys. 3 (1963) 1407-1456. | Zbl
,[22] Existence and uniqueness of solutions to an asymptotic equation of a variational wave equation with general data, Arch. Rational Mech. Anal. 155 (2000) 49-83. | MR | Zbl
, ,[23] Rarefactive solutions to a nonlinear variational wave equation, Comm. Partial Differential Equations 26 (2001) 381-420. | MR | Zbl
, ,[24] P. Zhang, Y. Zheng, Weak solutions to a nonlinear variational wave equation with general data, Ann. Inst. H. Poincaré Anal. Non Linéaire (2005), in press. | Numdam | MR | Zbl
Cité par Sources :