We obtain Dini type estimates for a class of concave fully nonlinear nonlocal elliptic equations of order with rough and non-symmetric kernels. The proof is based on a novel application of Campanato's approach and a refined estimate in [9].
@article{AIHPC_2018__35_4_971_0, author = {Dong, Hongjie and Zhang, Hong}, title = {Dini estimates for nonlocal fully nonlinear elliptic equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {971--992}, publisher = {Elsevier}, volume = {35}, number = {4}, year = {2018}, doi = {10.1016/j.anihpc.2017.09.003}, mrnumber = {3795023}, zbl = {1394.35061}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.09.003/} }
TY - JOUR AU - Dong, Hongjie AU - Zhang, Hong TI - Dini estimates for nonlocal fully nonlinear elliptic equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 971 EP - 992 VL - 35 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.09.003/ DO - 10.1016/j.anihpc.2017.09.003 LA - en ID - AIHPC_2018__35_4_971_0 ER -
%0 Journal Article %A Dong, Hongjie %A Zhang, Hong %T Dini estimates for nonlocal fully nonlinear elliptic equations %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 971-992 %V 35 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.09.003/ %R 10.1016/j.anihpc.2017.09.003 %G en %F AIHPC_2018__35_4_971_0
Dong, Hongjie; Zhang, Hong. Dini estimates for nonlocal fully nonlinear elliptic equations. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 971-992. doi : 10.1016/j.anihpc.2017.09.003. http://www.numdam.org/articles/10.1016/j.anihpc.2017.09.003/
[1] Fully nonlinear elliptic equations on general domains, Can. J. Math., Volume 54 (2002) no. 6, pp. 1121–1141 | MR | Zbl
[2] On the Dirichlet problem for second-order elliptic integro-differential equations, Indiana Univ. Math. J., Volume 57 (2008) no. 1, pp. 213–246 | DOI | MR | Zbl
[3] Equazioni paraboliche del secondo ordine e spazi , Ann. Mat. Pura Appl. (4), Volume 73 (1966), pp. 55–102 | MR | Zbl
[4] The Dini condition and regularity of weak solutions of elliptic equations, J. Differ. Equ., Volume 30 (1978) no. 3, pp. 308–323 | MR | Zbl
[5] Regularity theory for fully nonlinear integro-differential equations, Commun. Pure Appl. Math., Volume 62 (2009) no. 5, pp. 597–638 | MR | Zbl
[6] The Evans–Krylov theorem for nonlocal fully nonlinear equations, Ann. Math. (2), Volume 174 (2011) no. 2, pp. 1163–1187 | MR | Zbl
[7] Regularity for solutions of non local parabolic equations, Calc. Var. Partial Differ. Equ., Volume 49 (2014) no. 1–2, pp. 139–172 | MR | Zbl
[8] Further time regularity for nonlocal, fully non-linear parabolic equations, Commun. Pure Appl. Math., Volume 70 (2017) no. 5, pp. 950–977 | MR | Zbl
[9] On Schauder estimates for a class of nonlocal fully nonlinear parabolic equations, Calc. Var. Partial Differ. Equ. (2017) (in press) | arXiv | MR | Zbl
[10] On -estimates for a class of non-local elliptic equations, J. Funct. Anal., Volume 262 (2012) no. 3, pp. 1166–1199 | MR | Zbl
[11] Schauder estimates for a class of non-local elliptic equations, Discrete Contin. Dyn. Syst., Volume 33 (2013) no. 6, pp. 2319–2347 | MR | Zbl
[12] Nonlinear elliptic systems with Dini continuous coefficients, Arch. Math. (Basel), Volume 78 (2002) no. 1, pp. 58–73 | MR | Zbl
[13] Regularity results for fully nonlinear parabolic integro-differential operators, Math. Ann., Volume 357 (2013) no. 4, pp. 1541–1576 | MR | Zbl
[14] Pseudodifferential operators and Markov processes, J. Math. Soc. Jpn., Volume 36 (1984) no. 3, pp. 387–418 | MR | Zbl
[15] Fully nonlinear elliptic equations and the Dini condition, Commun. Partial Differ. Equ., Volume 22 (1997) no. 11–12, pp. 1911–1927 | MR | Zbl
[16] Schauder estimates for solutions of linear parabolic integro-differential equations, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5977–5998 | MR | Zbl
[17] Schauder estimates for nonlocal fully nonlinear equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 5, pp. 1375–1407 | Numdam | MR | Zbl
[18] On the regularity of solutions to divergence form elliptic systems with Dini-continuous coefficients, Chin. Ann. Math., Ser. B, Volume 38 (2017) no. 2, pp. 489–496 | MR | Zbl
[19] Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl. (4), Volume 148 (1987), pp. 77–99 | MR | Zbl
[20] Differentiability of solutions to second-order elliptic equations via dynamical systems, J. Differ. Equ., Volume 250 (2011) no. 2, pp. 1137–1168 | MR | Zbl
[21] On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces, Liet. Mat. Rink., Volume 32 (1992) no. 2, pp. 299–331 | MR | Zbl
[22] On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem, Potential Anal., Volume 40 (2014) no. 4, pp. 539–563 | DOI | MR | Zbl
[23] Interior regularity for nonlocal fully nonlinear equations with Dini continuous terms, J. Differ. Equ., Volume 260 (2016) no. 11, pp. 7892–7922 | MR | Zbl
[24] On a generalization of quasi-conformal mappings and its application to elliptic partial differential equations, Contributions to the Theory of Partial Differential Equations, Annals of Mathematics Studies, vol. 33, Princeton University Press, Princeton, N. J., 1954, pp. 95–100 | MR | Zbl
[25] Classical solution of second-order nonlinear elliptic equations, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 52 (1988) no. 6, pp. 1272–1287 (1328) | MR
[26] Regularity for parabolic integro-differential equations with very irregular kernels, Anal. PDE, Volume 9 (2016) no. 3, pp. 727–772 | MR | Zbl
[27] regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 4, pp. 3571–3601 | MR | Zbl
[28] Schauder's existence theorem for α-Dini continuous data, Ark. Mat., Volume 19 (1981) no. 2, pp. 193–216 | MR | Zbl
[29] Schauder estimates for elliptic and parabolic equations, Chin. Ann. Math., Ser. B, Volume 27 (2006) no. 6, pp. 637–642 | MR | Zbl
Cité par Sources :