In this paper, we establish pointwise Schauder estimates for solutions of nonlocal fully nonlinear elliptic equations by perturbative arguments. A key ingredient is a recursive Evans–Krylov theorem for nonlocal fully nonlinear translation invariant equations.
Mots clés : Integro-differential equations, Schauder estimates, Recursive Evans–Krylov theorem
@article{AIHPC_2016__33_5_1375_0, author = {Jin, Tianling and Xiong, Jingang}, title = {Schauder estimates for nonlocal fully nonlinear equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1375--1407}, publisher = {Elsevier}, volume = {33}, number = {5}, year = {2016}, doi = {10.1016/j.anihpc.2015.05.004}, zbl = {1349.35386}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.05.004/} }
TY - JOUR AU - Jin, Tianling AU - Xiong, Jingang TI - Schauder estimates for nonlocal fully nonlinear equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1375 EP - 1407 VL - 33 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2015.05.004/ DO - 10.1016/j.anihpc.2015.05.004 LA - en ID - AIHPC_2016__33_5_1375_0 ER -
%0 Journal Article %A Jin, Tianling %A Xiong, Jingang %T Schauder estimates for nonlocal fully nonlinear equations %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1375-1407 %V 33 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2015.05.004/ %R 10.1016/j.anihpc.2015.05.004 %G en %F AIHPC_2016__33_5_1375_0
Jin, Tianling; Xiong, Jingang. Schauder estimates for nonlocal fully nonlinear equations. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 5, pp. 1375-1407. doi : 10.1016/j.anihpc.2015.05.004. http://www.numdam.org/articles/10.1016/j.anihpc.2015.05.004/
[1] Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations, J. Eur. Math. Soc., Volume 13 (2011), pp. 1–26 | Zbl
[2] Bootstrap regularity for integro-differential operators, and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 13 (2014), pp. 609–639
[3] Regularity results for stable-like operators, J. Funct. Anal., Volume 257 (2009), pp. 2693–2722 | Zbl
[4] Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math. (2), Volume 130 (1989), pp. 189–213 | DOI | Zbl
[5] Fully Nonlinear Elliptic Equations, Am. Math. Soc. Colloq. Publ., vol. 43, American Mathematical Society, Providence, RI, 1995 | Zbl
[6] Regularity theory for fully nonlinear integro-differential equations, Commun. Pure Appl. Math., Volume 62 (2009), pp. 597–638 | DOI | Zbl
[7] Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., Volume 200 (2011), pp. 59–88 | DOI | Zbl
[8] The Evans–Krylov theorem for non local fully non linear equations, Ann. Math. (2), Volume 174 (2011), pp. 1163–1187 | DOI | Zbl
[9] Regularity for solutions of non local parabolic equations, Calc. Var. Partial Differ. Equ., Volume 49 (2014), pp. 139–172 | Zbl
[10] Regularity for solutions of non local parabolic equations II, J. Differ. Equ., Volume 256 (2014), pp. 130–156 | DOI
[11] Hölder estimates for non-local parabolic equations with critical drift | arXiv | DOI | Zbl
[12] estimates for concave, non-local parabolic equations with critical drift | arXiv | Zbl
[13] On -estimates for a class of nonlocal elliptic equations, J. Funct. Anal., Volume 262 (2012) no. 3, pp. 1166–1199 | DOI | Zbl
[14] Schauder estimates for a class of non-local elliptic equations, Discrete Contin. Dyn. Syst., Volume 33 (2013), pp. 2319–2347 | DOI | Zbl
[15] Aleksandrov–Bakelman–Pucci type estimates for integro-differential equations, Arch. Ration. Mech. Anal., Volume 206 (2012) no. 1, pp. 111–157 | DOI | Zbl
[16] Schauder estimates for solutions of linear parabolic integro-differential equations | arXiv | DOI | Zbl
[17] Hölder regularity for integro-differential equations with nonlinear directional dependence, Indiana Univ. Math. J., Volume 63 (2014), pp. 1467–1498
[18] interior regularity for nonlinear nonlocal elliptic equations with rough kernels, Commun. Partial Differ. Equ., Volume 38 (2013), pp. 2081–2106 | DOI | Zbl
[19] Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, American Mathematical Society, Providence, RI, 1968 (translated from the Russian by S. Smith) | DOI | Zbl
[20] Estimates for elliptic system from composition material, Commun. Pure Appl. Math., Volume 56 (2003), pp. 892–925 | Zbl
[21] On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem, Potential Anal., Volume 40 (2014) no. 4, pp. 539–563 | DOI | Zbl
[22] Boundary regularity for fully nonlinear integro-differential equations | arXiv | DOI | Zbl
[23] Regularity for fully nonlinear nonlocal parabolic equations with rough kernels | arXiv | DOI | Zbl
[24] regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels | arXiv | DOI | Zbl
[25] L. Silvestre, Personal communications.
Cité par Sources :