Iterated integrals of paths arise frequently in the study of the Taylor's expansion for controlled differential equations. We will prove a factorial decay estimate, conjectured by M. Gubinelli, for the iterated integrals of non-geometric rough paths. We will explain, with a counter example, why the conventional approach of using the neoclassical inequality fails. Our proof involves a concavity estimate for sums over rooted trees and a non-trivial extension of T. Lyons' proof in 1994 for the factorial decay of iterated Young's integrals.
@article{AIHPC_2018__35_4_945_0, author = {Boedihardjo, Horatio}, title = {Decay rate of iterated integrals of branched rough paths}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {945--969}, publisher = {Elsevier}, volume = {35}, number = {4}, year = {2018}, doi = {10.1016/j.anihpc.2017.09.002}, mrnumber = {3795022}, zbl = {1391.60122}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.09.002/} }
TY - JOUR AU - Boedihardjo, Horatio TI - Decay rate of iterated integrals of branched rough paths JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 945 EP - 969 VL - 35 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.09.002/ DO - 10.1016/j.anihpc.2017.09.002 LA - en ID - AIHPC_2018__35_4_945_0 ER -
%0 Journal Article %A Boedihardjo, Horatio %T Decay rate of iterated integrals of branched rough paths %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 945-969 %V 35 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.09.002/ %R 10.1016/j.anihpc.2017.09.002 %G en %F AIHPC_2018__35_4_945_0
Boedihardjo, Horatio. Decay rate of iterated integrals of branched rough paths. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 945-969. doi : 10.1016/j.anihpc.2017.09.002. http://www.numdam.org/articles/10.1016/j.anihpc.2017.09.002/
[1] Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys., Volume 199 (1998) no. 1, pp. 203–242 | DOI | MR | Zbl
[2] Fractional order Taylor's series and the neo-classical inequality, Bull. Lond. Math. Soc., Volume 42 (2010), pp. 467–477 | DOI | MR | Zbl
[3] Geometric versus non-geometric rough paths, Ann. Inst. Henri Poincaré Probab. Stat., Volume 51 (2015) no. 1, pp. 207–251 | DOI | Numdam | MR | Zbl
[4] Ramification of rough paths, J. Differ. Equ., Volume 248 (2010), pp. 693–721 | DOI | MR | Zbl
[5] Rooted trees for 3D Navier–Stokes equation, Dyn. Partial Differ. Equ., Volume 3 (2006) no. 2, pp. 161–172 | DOI | MR | Zbl
[6] Differential equations driven by rough signals (I): an extension of an inequality of L.C. Young, Math. Res. Lett., Volume 1 (1994), pp. 451–464 | DOI | MR | Zbl
[7] Differential equations driven by rough signals, Rev. Mat. Iberoam., Volume 14 (1998) no. 2, pp. 215–310 | MR | Zbl
[8] Differential Equations Driven by Rough Paths, Springer, 2007 | DOI | MR | Zbl
[9] An inequality of Hölder type connected with Stieltjes integration, Acta Math., Volume 67 (1936), pp. 251–282 | DOI | MR | Zbl
Cité par Sources :